KORIŠTENJE SIJAČICE „HORSCH PRONTO 6 DC“ U SJETVI ULJANE REPICE (Brassica napus) NA OPG-u „JELOŠEK ZLATKO“

Šarić, Ivan

Undergraduate thesis / Završni rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of agriculture / Sveučilište Josipa Jurja Strossmayera u Osijeku, Poljoprivredni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:151:154200

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-03-26

Repository / Repozitorij:

Repository of the Faculty of Agrobiotechnical Sciences Osijek - Repository of the Faculty of Agrobiotechnical Sciences Osijek

zir.nsk.hr
Ivan Šarić
Preddiplomski studij, smjer Mehanizacija

KORIŠTENJE SIJAČICE „HORSCH PRONTO 6 DC“ U SJETVI ULJANE REPICE (Brassica napus) NA OPG-u „JELOŠEK ZLATKO“

Završni rad

Osijek, 2016.
KORIŠTENJE SIJAČICE „HORSCH PRONTO 6 DC“ U SJETVI ULJANE REPICE (Brassica napus) NA OPG-u „JELOŠEK ZLATKO“

Završni rad

Osijek, 2016.
Ivan Šarić

Preddiplomski studij, smjer Mehanizacija

KORIŠTENJE SIJAČICE „HORSCH PRONTO 6 DC“ U SJETVI ULJANE REPICE
(Brassica napus) NA OPG-u „JELOŠEK ZLATKO“

Završni rad

Povjerenstvo za ocjenu i obranu završnog rada:
1. prof. dr. sc. LUKA ŠUMANOVAC, predsjednik
2. DOMAGOJ ZIMMER, mag. ing. agr., mentor
3. prof. dr. sc. TOMISLAV JURIĆ, član
SADRŽAJ

1. UVOD ... 1

1.1. Sjetva uljane repice hibridne sorte „Hybrirock“ ... 2

2. MATERIJAL I METODE ISTRAŽIVANJA... 3

3. OPG „JELOŠEK ZLATKO“ ... 4

3.1. Opis sjetve na OPG-u „Jelošek Zlatko“ .. 5

4. PROIZVODAČ POLJOPRIVREDNE MEHANIZACIJE „HORSCH“ .. 9

5. PRINCIP RADA I OPIS RADNIH DIJELOVA SIJAČICE „HORSCH PRONTO 6 DC“ 11

5.1. Spremnik .. 13

5.2. Ventilator .. 14

5.2.1. Izravni pogon ventilatora .. 15

5.2.2. Pritezanje prirubnice ventilatora ... 15

5.3. Injektorska komora ... 16

5.4. Razvodnik ... 17

5.5. Rotor za sitno sjeme .. 18

5.5.1. Četke za čišćenje taloga .. 19

5.5.2. Održavanje rotora .. 19

5.6. Sjetvena jedinica s ulagačima .. 20

5.6.1. Sjetveni krak .. 21

5.6.2. Izjednačivač .. 21

5.6.3. Pritiskajući valjci ... 21

5.7. Markeri .. 22

5.7.1. Podešavanje markera ... 22

5.8. Tehnološke trake ili stalni tragovi ... 22

5.9. Kalibriranje .. 23
5.10. Podešavanje za rad ... 24
5.10.1. Dubina sjetve ... 24
5.11.2. Pritisak ulagača ... 24
5.11.3. Podešavanje dubine .. 26
5.12. Radna brzina ... 26
5.13. Okretanje ... 27
5.14. Nakon sjetve ... 28
5.16. Održavanje stroja ... 30
5.16.1. Čišćenje stroja ... 30
5.16.2. Intervalli održavanja .. 31
5.17. Garažiranje ... 33
6. KRONOMETRIRANJE ... 34
7. ZAKLJUČAK .. 35
8. POPIS LITERATURE ... 36
9. SAŽETAK ... 37
10. SUMMARY .. 38
11. POPIS SLIKA .. 39
12. POPIS TABLICA ... 41
13. POPIS LINKOVA ... 42
TEMELJNA DOKUMENTACIJSKA KARTICA ... 43
1. UVOD

Autor AgroBase-a, Jurišić, M. u svom djelu iz 2015. godine navodi kako se uljana repica (Brassica napus) uzgaja radi sjemena koje sadrži 40-49% ulja i 18-25% bjelančevina. Do pronalaska mineralnih ulja i električne struje, navedeno ulje se koristilo za osvjetljenje i kao mazivo. Selekcijom se uspio dobiti sortiment s neznatnim sadržajem eruka kiseline (manje od 2%) pa se ulje uljane repice bez ikakvih zdravstvenih zaprijeka koristi za prehranu ljudi. Uljane pogače i sačma, koji ostaju nakon ekstrakcije ulja, sadrže u prosjeku oko 28% sirovih, odnosno 23% probavlјivih proteina, 8% sirove masti, 0,9% sirovih vlakana, 22% NET-a (nedušičnih - ekstrativnih tvari) i drugih korisnih sastojaka; vrlo su vrijedna koncentrirana krmiva. U novom sortimentu značajno je smanjena količina glukozinolata. Nove sorte omogućile su brže širenje proizvodnje uljane repice. Ona sve više zamjenjuje suncokret i soju na hladnijim i vlažnijim područjima.

Isti autor piše kako uljana repica počinje cvjetati rano u proljeće, a cvatnja traje dvadesetak i više dana pa je to vrlo rana pčelinja paša. Pčele po jednom ha uljane repice mogu skupiti oko 50 kg meda, te su korisne jer pomažu oprašivanje, što rezultira boljom oplodnjom i povećanjem prinosa. Uljana repica je dobra predkultura, jer se rano žanje i dobro „guši“ korove. Važna je kao predkultura ozimih žitarica. Uljana repica sa žitaricama nema zajedničkih bolesti i štetnika, pa je i to važno za plodored. Najranije se sije, a prva ili među prvim kulturama dolazi za žetvu, pa je moguće dobro rasporediti i iskoristiti ljudsku radnu snagu i mehanizaciju.

Autor dalje nastavlja o zasijanim površinama uljane repice te piše kako se u svijetu uljana repica uzgaja na preko 24 milijuna ha. Najviše se sije u Kini, Indiji i Kanadi. U europskim zemljama najviše u Poljskoj, Njemačkoj (oko milijun ha), Francuskoj i Velikoj Britaniji. U Hrvatskoj se uljana repica tradicionalno proizvodi i to u sjevero-zapadnom dijelu Hrvatske, gdje joj uvjeti najviše odgovaraju. Hrvatska je proizvodila repicu na oko 25 tisuća ha. Povećanje površina zasijanih uljanom repicom uslijedilo je nakon promjene sortimenta, uvodenjem u prizvodnju sorata s niskim sadržajem eruka kiseline, te nakon značajnog poboljšanja tehnologije i povećanog intresa (biodiesel), pa zato i bolje cijene.

Zadatak ovog završnog rada je objasniti princip rada i održavanja sijačice „Horsch Pronto 6 DC“ te opisati pripremu za sjetvu i tehniku sjetve na OPG-u „Jelošek Zlatko“. U
daljnjem tekstu opisuje se sijačica te tehnika pripreme za sjetvu i sama sjetva na OPG-u „Jelošek Zlatko“ kako bi se dobio točan radni učinak agregata i uvidjelo gdje su vremenski gubici.

1.1. Sjetva uljane repice hibridne sorte „Hybrirock“

„Hybrirock“ je hibridna sorta uljane repice (slika 1.) koju na tržištu nudi sjemenarna „KWS“. Oni naglašavaju izrazito visok proizvodni potencijal prinosa kao i izrazito stabilan prinos kroz niz godina gdje se postiže srednje visok do visok sadržaj ulja u zrnu odnosno prinos ulja po ha. Fenološko - morfološka obilježja ovog hibrida su ta da se vrlo brzo razvija prije zime te neometana nastavlja razvoja nakon ekstremno niskih temperatura, osim toga odlikuje se i robusnom i bujno razgranatom stabljikom. „Hybrirock“ je hibrid koji srednje rano počinje s cvatnjom te srednje rano dozrijeva. „KWS“ na svojim internet stranicama preporuča visoku razinu agrotehnike te gustoću kod sjetve oko 45-55 klijavih zrna po četvornome metru. Osim svih ovih odlika, prethodno nabrojanih, uzgajivači uljane repice se odlučuju za ovaj hibrid jer je pogodan za sjetvu u kasnijim rokovima i težim uvjetima, tako da je optimalan rok za sjetvu između 05. i 25. rujna.

Slika 1. Uljana repica „Hybrirock“ hibrida (Izvor: Internet - link 1.)
2. MATERIJAL I METODE ISTRAŽIVANJA

3. OPG „JELOŠEK ZLATKO“

Tablica 1. Popis mehanizacije kojom raspolaže OPG „Jelošek Zlatko“

<table>
<thead>
<tr>
<th>Strojevi i uređaji za osnovnu obradu tla</th>
<th>Kratka tanjurača „Horsch Joker RT“<sup>“</sup>, plug 4 brazde premetnjak „Kverneland“<sup>“</sup>, podrivač „Dondi“<sup>“</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strojevi i uređaji za dopunsku obradu tla</td>
<td>Roto drljača „Tulip“<sup>“</sup></td>
</tr>
<tr>
<td>Strojevi za gnojidbu</td>
<td>Raspršivač mineralnog gnojiva „Bogbale“<sup>“</sup></td>
</tr>
<tr>
<td>Strojevi za sjetvu i sadnju</td>
<td>Žitna sijačica „Horsch Pronto 6 DC“<sup>“</sup>, pneumatska sijačica „Monosem“<sup>“</sup></td>
</tr>
<tr>
<td>Strojevi za njegu i zaštitu bilja</td>
<td>Prskalica „Hardi“<sup>“</sup></td>
</tr>
<tr>
<td>Strojevi za malčiranje</td>
<td>Malčer „Ino“<sup>“</sup></td>
</tr>
<tr>
<td>Traktori</td>
<td>„Claas Axion 850“<sup>“</sup> 3kom, „Claas Arion 420“<sup>“</sup>, „Claas Arion 410“<sup>“</sup> i „New Holland TL 100“<sup>“</sup></td>
</tr>
<tr>
<td>Univerzalni žitni kombajni</td>
<td>„Claas Lexion 670“<sup>“</sup> i „Claas Tucano 450“<sup>“</sup></td>
</tr>
</tbody>
</table>

OPG raspolaže dvjema parcelama gdje se nalaze hale za skladištene žitarica, repromaterijala te mehanizacije. Glavni objekti su u Bektincima gdje je OPG i adresiran, a drugo je u Habjanovcima zbog blizine proizvodnih površina i u svrhu povećanja radnog učinka radnih strojeva, tj. smanjenja vremenskih gubitaka. Na oba mjesta uz hale se nalaze moderno opremljene, mosne vage.

Sva navedena mehanizacija se upotrebljava na 552 ha obradive površine od čega je 75 ha u najmu. OPG osim vlasnika, Zlatka Jelošeka koji je inženjer agronomije, zapošljava još 3 radnika.

Tablica 2. Popis radnika i završena stručna sprema

<table>
<thead>
<tr>
<th>IME I PREZIME RADNIKA</th>
<th>STRUČNA SPREMA RADNIKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radnik 1.</td>
<td>SSS, poljoprivredni tehničar</td>
</tr>
<tr>
<td>Radnik 2.</td>
<td>OS</td>
</tr>
<tr>
<td>Radnik 3.</td>
<td>SSS</td>
</tr>
</tbody>
</table>

3.1. Opis sjetve na OPG-u „Jelošek Zlatko“

Sjetva na kojem je obavljeno utvrđivanje postupka sjetve uljane repice metodom promatranja i praćenja rukovatelja u izvršavanju sjetve uljane repice je započeto 11. rujna 2016. godine. Radni dan je započeo u 6 sati i 50 minuta u ekonomskom dvorištu OPG-a u Habjanovcima. Prvo na rasporedu je bilo određivanje dnevnih zadataka koje je odredio vlasnik svojim zaposlenicima. U 7 sati se započelo s pripremom za sjetvu tj. dnevnim tehničkim održavanjem, u okviru čega se obavlja i punjenje spremnika dizel gorivom (slika
3.) i podmazivanje mazalicom predviđenih mjesta na radnom stroju (slika 4.). Osim toga, izvršila se i provjera svih funkcija na traktoru i radnom stroju.

Slika 3. Punjenje spremnika dizel gorivom (Izvor: vlastita fotografija)

Slika 4. Podmazivanje radnog stroja mazalicom (Izvor: vlastita fotografija)

Dnevno tehničko održavanje je trajalo 23 minute, nakon čega se krenulo prema površini koja je predviđena za sjetvu. Put do parcele je trajao 27 minuta, što je dosta umanjilo radni učinak stroja gdje je u okviru jedne radne smjene utrošeno gotovo jedan sat na put do parcele i natrag, te to predstavlja preveliki vremenski gubitak. Nakon što su ustanovljeni povoljni uvjeti za sjetvu, uz prosječnu vlažnost tla, krenulo se u podešavanje sijačice. Prije svega bilo je potrebno prebaciti sijačicu iz transportnog u radni položaj, putem hidraulike. Zatim se na računalu namjestile vrijednosti potrebne za sjetvu: utrošak sjemena po ha, broj okretaja ventilatora, dubina sjetve, markeri te uključivanje stalnih tragova. Stalni tragovi su bili podešeni tako da se uključuju na početku u drugom prohodu zatim svaki treći prohod, s obzirom da je prskalica 18 m radnog zahvata.
Podešavanje dubine je također oduzelo „dobar dio“ vremena jer je sijačica bila podešena preplitko još od prijašnje sjetve, na 1 cm dubine. Podešavanje se izvodi tako da se umeće odgovarajuća kombinacija obojanih alumijskih kopči na cilindar za spuštanje sjetvene baterije. Svaka boja alumijske kopče predstavlja određeni razmak u milimetrima. Provjera dubine se obavlja tako što rukovatelj stroja pređe put od 20 m, zatim potraži posijano sjeme i mjernim instrumentom izmjeri dubinu. U slučaju da dubina ne odgovara, alumijske kopče se ponovno preslagaju dok se ne dobije željena dubina. Uvijek se mora pripaziti da su na svakom cilindru jednako raspoređene alumijske kopče jednakih boja. Dubina sjetve je 1,5 cm.

Kada je sve bilo spremno, rukovatelj je krenuo sa sjetvom te je prvo posijao uvratine. S obzirom da parcela ima mnogo kuteva, njih čak 8, sjetva uvratina je također oduzela mnogo vremena, posebno okretanje, ono vrijeme kad je sijačica u podignutom položaju i ne vrši sjetvu. Sijanje uvratina zbog velikog radnog zahvata sijačice zahtjeva najmanje tri kruga, odnosno 18 m od svakog ruba parcele.

Na 9. hektru, alarm na zaslonu računala je označio kako u spremniku nedostaje sjemena. Rukovatelj je zatim ugasio radni stroj i pristupio punjenju spremnika zatim kalibraciji. Kalibracija se sastoji od 4 dijela. Prvi dio je punjenje spremnika sjemenom uljane repice, zatim drugi dio je ispuštanje sjemena u posebnu vreću predviđenu od strane proizvođača. Pretposljedni dio je vaganje ispuštenog sjemena gdje se treba voditi računa da se od izvagane mase oduzme masa vreće koja iznosi 1.100 g. Nakon što je obavljena i posljednja faza, podaci su se unjeli u računalo gdje je ono izračunalo koliki će biti utrošak sjemena. Ispuštanje sjemena oduzima puno vremena zajedno s kalibracijom, što naravno utječe i na radni učinak stroja. Vremenski gubitak iznosi 26 minuta.

Prva parcela je površine 16,27 ha i utrošak sjemena iznosio je 48 kg. Utrošak sjemena kg/ha se računa tako da se utrošenih 48 kg podijeli s 16,79 ha što predstavlja posijanu površinu s preklapanjima, zatim se dobije rezultat od 2,85 kg/ha. Utrošak goriva je iznosio 94 l i sjetva je trajala 3 sata. Od ta 3 sata sijačica je vršila rad u najužem smislu 113 minuta. Svi podaci su očitani na zaslonu računala koji se nalazi u traktoru (slika 5.).
Slika 5. Očitavanje podataka sa zaslona računala na kraju sjetve prve parcele (Izvor: vlastita fotografija)
4. PROIZVODAČ POLJOPRIVREDNE MEHANIZACIJE „HORSCH“

Slika 6. Sijačica „Horsch Maestro“ u radu (Izvor: Internet - link 2.)

Poduzeće je službeno krenulo s radom 1984. godine te je s vremenom raslo velikom brzinom o čemu govore nagrade koje su primili 2009. godine te 2013. godine za najbrže

OPG „Jelošek Zlatko“ se može pohvaliti posjedovanjem dva stroja marke „Horsch“ to su sijačica „Pronto 6 DC“ radnog zahvata 6 m, kupljena 2013. godine u vrijednosti 100.000 € te kratka tanjurača „Joker RT“ također radnog zahvata 6 m. Ove godine oba stroja su izvršila svoju zadaću, „Joker RT“ je izvršio predsjetvenu pripremu, a „Horsch Pronto 6 DC“ sijačica je izvršila sjetvu uljane repice na 137 ha u rok od svega nekoliko dana.
5. PRINCIP RADA I OPIS RADNIH DIJELOVA SIJAČICE „HORSCH PRONTO 6 DC“

Proizvođač poljoprivrednih strojeva konstruirao je sijačicu za sjetvu strnih žitarica za sve uvjete sjetve, tako sjetva može biti izvršena nakon pluga, gruberia, teške tanjurače ili čak direktno u strništje. Princp „Pronto“ (niveliranje – konsolidiranje – sijanje – pritisak) omogućuje precizno polaganje sjemena u svim uvjetima i pri velikim brzinama, od 10 do 20 km/h.

![Slika 7. Sijačica „Horsch Pronto 6 DC“ i traktor „Claas Axion 850“ u radu (Izvor: vlastita fotografija)](image)

Prvi dio sijačice čini sustav od dva reda nazubljenih tanjura, promjera 46 cm, nazvan „DiscSystem“. „DiscSystem“ vrši agresivno rahljenje, niveliranje te proizvodnju povoljne strukture zemlje. Pritiskom tanjura upravlja se hidraulično u kabini traktora. Svaki tanjur ima svoj trajno podmazan i hermetički zatvoren ležaj što omogućuje rad na duže vrijeme bez održavanja. Iza kratke tanjurače dolazi jedan red gumnih kotaća gusto složenih na osovin. Kotači ispunjeni umjetnom masom služe i kao transportni kotači i kao paker valjak za osiguravanje jedinstvenih sjetvenih uvjeta pred svakim diskom za sjetvu. Promjer gumnih kotaća je 65 cm. Nakon reda valjaka nalaze se redom dvostruki diskosni ulagač s plastičnim usmjerivačem sjemena zatim pritiskajući nagazni kotač obložen gumom te na kraju par elastičnih prstiju koji služe za zagrtanje tla. Plastični usmjerivač u donjem dijelu ulagača osigurava da svako sjeme bude uloženo na dno brazdice, a gumeni kotači osiguravaju preciznost njegovog polaganja u tlo.
Tablica 3. Tehnički podaci za sijačicu „Horsch Pronto 6 DC“

<table>
<thead>
<tr>
<th>Dimenzije i mase:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportna širina, (m)</td>
<td>3,00</td>
</tr>
<tr>
<td>Transportna visina, (m)</td>
<td>3,40</td>
</tr>
<tr>
<td>Duljina, (m)</td>
<td>8,10</td>
</tr>
<tr>
<td>Radna širina, (m)</td>
<td>6,00</td>
</tr>
<tr>
<td>Masa praznog vozila, (kg)</td>
<td>6.300</td>
</tr>
<tr>
<td>Potporno opterećenje, (kg)</td>
<td>900</td>
</tr>
<tr>
<td>Opterećenje osovine, (kg)</td>
<td>5.500</td>
</tr>
<tr>
<td>Dopuštena ukupna masa, (kg)</td>
<td>9.200</td>
</tr>
<tr>
<td>Potrebna vučna sila, (kW)</td>
<td>Od 130</td>
</tr>
<tr>
<td>Broj ulagača</td>
<td>40</td>
</tr>
<tr>
<td>Razmak između redova, (cm)</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S uređajem za kruto gnojivo:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportna visina, (m)</td>
<td>3.40</td>
</tr>
<tr>
<td>Masa praznog vozila, (kg)</td>
<td>7.000</td>
</tr>
</tbody>
</table>

Zimmer R. i dr., (2009.) objašnjavaju kako „Horsch“ proizvodi i varijantu žitne sijačice s oznakom „CO“ koju karakterizira mehaničko izuzimanje sjemena i pneumatski transport do ulagača, ali i način ulaganja sjemena i gnojiva u tlo. Tehnika sjetve se temelji na motičicama koje rahle tlo, iza kojih posebno konstruirani ulagači istovremeno polažu sjeme i tekuće gnojivo u tlo.

Na nekim tipovima sijačica iz proizvodnog programa Horsch, posebno izvedenim ulagačima polaže se sjeme, a ispod tekuće gnojivo. Jedna provodna cijev dovodi sjeme za dva reda i polaže (dubina 2-3 cm) na sjetvenu posteljicu. Iznad sjemena je rahli sloj tla, a ispod nešto „čvršći“ sloj tla, zbog uspostavljanja kapilariteta. Tekuće gnojivo ulaže se precizno, okomito ispod sjemena, čime se dobiva optimalan razmak (5-6 cm) između sjemena i gnojiva. Uporabom različitih sjetvenih valjaka, pogonjenih elektromotorom, sijačicom se mogu sijati strne žitarice, kukuruz i sitnozrnate kulture. Visoka preciznost sjeve moguća je do brzine od 15km/h, a lagano poravanje tla iza ulagača obavljaju gumeni kotači - valjci, dimenzija 185/65-15. Sijačica se izražuje sa zahvatima 3, 4, 6, 8, 9 i 12 m.
5.1. Spremnik

Spremnik može biti izveden kao pojedinačni spremnik za sjeme ili kao dvostruki spremnik za sjeme i gnojivo. Pojedinačni spremnik ima zapreminu 2.800 / 3.500 l i zatvoren je poklopcem. Da bi se sjeme zaštitilo od prljavštine, prašine i vlage, poklopac treba stalno biti zatvoren. Pri jakom stvaranju prašine, prašina se može taložiti u spremniku i puniti čelije rotora uslijed čega dolazi do pogrešaka doziranja i nepotrebnog trošenja u dozatoru.

Slika 8. Unutrašnjost spremnika (Izvor: vlastita fotografija)

Slika 9. Vanjski izgled spremnika (Izvor: vlastita fotografija)

Dvostruki spremnik ima zapreminu 3.800 l i podijeljen je u omjeru 60 : 40 te je izveden kao tlačni spremnik i pri sjetvi mora stalno biti zatvoren i zabrtvljen. Nezabrtvljenost s gubitkom zraka dovodi do pogrešaka pri sijanju. Izlazna količina smanjuje se i može doći čak do nule. Ako se dvostrukim spremnikom treba izbacivati samo
sjeme, a oba spremnika upotrijebiti za sjeme, iz stražnjeg spremnika može se izvaditi dio pregradnog zida. Nakon sjetve se ponovno zatvori pregradni zid i ponovno blokira zaklopka zraka ventilatora u srednji položaj.

5.2. Ventilator

Slika 10. Motor ventilatora (Izvor: Uputa za rad, Art.: 80441702 hr)

Konfiguracija ventilatora, transport sjemena i polaganje sjemena moraju se redovito kontrolirati na početku sjetve i kod velikih površina. Redovito se treba kontrolirati i čistiti prljavština nataložena na krilu ventilatora i zaštitnoj rešetki. Talozi na zaštitnoj rešetki uslijed gubitka zraka uzrokuju začepljenja u crijevima za sjetvu dok talozi na kotaču ventilatora dovode do necentriranosti, a time se ležaj može previše opteretiti i oštetiti.
5.2.1. Izravni pogon ventilatora

Hidraulični ventilator se pokreće izravno od strane hidraulike traktora. Za reguliranje broja okretaja traktor mora biti opremljen ventilom za regulaciju strujanja. Hidraulična crpka treba transportirati dovoljno ulja kako se broj okretaja ventilatora ne bi smanjio i pri padu broja okretaja traktora ili pri aktiviranju drugih hidrauličnih funkcija. Broj okretaja ventilatora se podešava količinom ulja na ventilu za kontrolu protoka u traktoru.

Kod provjere i održavanja treba pripaziti da se osigura povratni tlak od maksimalno 5 bar i da se provjeri podešenost prigušne zaklopke. Proizvođač napominje također da bi izbjegla začepljenja, treba redovito izvršavati čišćenje češčenje rešetke za ulaz zraka kako se ne bi smanjio protok zraka. Osim toga bitno je očistiti krilo ventilatora od taloga kako bi izbjegli necentriranost i štete na kolu s krilima te je bitno pritegnuti stezni konus na vratilu ventilatora.

5.2.2. Pritezanje prirubnice ventilatora

Posebna pažnja u „Uputama za rad“, koju također i rukovatelj naglašava, je skrenuta na održavanje ventilatora kao „srca“ ovog stroja. Stezni konus (slika 11.) na pogonu ventilatora hidrauličnog motora se može otpustiti zbog temperaturnih amplituda i taloženja materijala na rotoru ventilatora, a rotor ventilatora se može pomaknuti do pogonskog vratila i uništiti ventilator te zbog toga bi se stezni konus trebao ponovo pritezati nakon svakih otprilike 50 sati te jednom godišnje provjeriti.

Pri pritezanju steznih vijaka u uputama za rad naglašavaju da se obrati pažnja na sljedeće:

- Kolo ventilatora se pomiče pri pritezanju vijaka, prije svega kod nove montaže, prema kućištu u smjeru zaštitne rešetke zbog čega se neka labavija prirubnica treba centrirati bliže hidrauličnom motoru.
- Stezne površine trebaju biti bez ulja i maziva.
- Stezni vijci se trebaju pritegnuti posve ravnomjerno i u više koraka. Pritezanje na konus se u međuvremenu treba olakšati laganim udarcima po prirubnici (plastični čekić ili drška čekića). Colni vijci u izvedbi br. 10 - 24 4.6 se pri tome smiju pritegnuti samo s najviše 6,8 Nm.
• Nakon pritezanja treba provjeriti okreće li se kolo ventilatora slobodno i ravnomjerno.

Slika 11. Stezni konus (Izvor: Uputa za rad, Art.: 80441702 hr)

5.3. Injektorska komora

U injektorskoj komori (slika 12.) dozator donosi sjeme u struju zraka. Ispod je postavljen sklopivi poklopac. Za kalibriranje se taj poklopac otvori i objesi se vreća za kalibriranje na kuku koja se nalazi na kućištu. Kako pri sjetvi ne bi došlo do smetnji funkcija na injektorskoj komori ili na transportu sjemena, odnosno njegovoj distribuciji, svi priključci i poklopac trebaju biti zabravljeni jer gubici zraka dovode do pogrešaka pri doziranju.

Slika 12. Injektorska komora (Izvor: Uputa za rad, Art.: 80441702 hr)
5.4. Razvodnik

Razvodnik sjemena (slika 13.) postavljen je na stražnjem dijelu spremnika. On raspodjeljuje i vodi sjeme do ulagača. U izvedbi s dvostrukim spremnikom razvodnik za suho gnojivo ugrađen je u stražnji spremnik. Svi dijelovi na razvodniku moraju biti zabrtvljeni. Čak i mala propuštanja i gubici zraka uzrokuju neravnomjernu raspodjelu.

Slika 13. Razvodnik sjemena s magnetnim zaklopkama (Izvor: Uputa za rad, Art.: 80441702 hr)

Za posebne primjene mogu se u razvodniku zatvoriti pojedini izlazi. Za to je potrebno odvrnuti poklopc i umetnuti dijelove za punjenje sa savijenom stranom prema dolje u željene izlaze (slika 14.).

Slika 14. Unutrašnjost razvodnika i dijelovi za punjenje sa savijenom stranom (Izvor: Uputa za rad, Art.: 80441702 hr)
Ako zatvorene vodove za sjeme nadziru senzori protoka sjemena, senzori se moraju izvaditi ili ugraditi u druga crijeva za sijanje kako ne bi stalno prijavljivali pogreške u protoku sjemena. Na razvodniku su postavljeni motorni zasuni (slika 15.) za upravljanje stalnim tragovima. Zatvorenost zasuna mora se provjeriti po zračnoj struji na ulagača sijačice ili kod polaganja sjemena na površini. Motorni zasuni imaju na donjoj strani na vratilu malu oznaku koja pokazuje položaj zaklopki. Ovdje se može kontrolirati okretanje zaklopke i krajnji položaj. Potrebno je redovito kontrolirati postojanje stranih tijela u razvodniku. Ona ometaju protok sjemena i funkciju motornih zasuna. Motorni zasuni se nalaze i na sijačici kakva se koristi na OPG-u „Zlatko Jelošek“.

![Slika 15. Razvodnik s motornim zasunima (Izvor: vlastita fotografija)](image)

5.5. Rotor za sitno sjeme

Rotori za sitno sjeme se sastoje od čelijskih pločica, odstojnih elemenata i pogonskog vratila. Kako bi se izbjegle smetnje funkcija pri sjetvi sitnog sjemena, čelijski rotori se kompletno prethodno postavljaju u tvornici.

Rotori (slika 16.) se mogu postavljati s jednom ili dvije čelijske pločice. Dvije čelijske pločice na rotoru udvostručuju transportirani volumen. Čelijske pločice su dostupne s transportiranim volumenom od 3,5 cm³, 5 cm³, 10 cm³ i 25 cm³. Kod sijanja se u rotoru okreću samo čelijske pločice, a odvojni elementi su blokirani graničnicima na kućištu.

5.6.2. Održavanje rotora

Funkcija i upotrebljivost rotora za sitno sjeme mora se provjeravati svakodnevno kako se navodi u uputama za rad:

- Između čelijskih pločica ne smije biti nikakvih proreza. Ako je prorez prevelik, moraju se umetnuti dodatne prolazne pločice.
- Čelijske pločice moraju se lagano pokretati. Lužine ili slično ne smiju blokirati čelijske pločice ili ležaj.
- Sigurnosni klipovi moraju biti prisutni i ispravno montirani kako ne bi došlo do nastajanja proreza.

5.5.1. Četke za čišćenje taloga

Četke za čišćenje taloga čiste čelijske pločice u rotorima za sitno sjemenje. Prije sjetve sitnog sjemenja, četke za čišćenje taloga se trebaju ugraditi u bočni poklopac i potrebno je provjeriti njihovu funkciju. Proizvođač nalaže da se obavi provjera: rotacije i pričvršćenja, stanje i učinak čišćenja četki te da se ugradi bočni poklopac s četkama u dozator. Zatim, četke trebaju tijesno nalijegati na čelijske pločice i okretati se zajedno s rotorom (slika 17.). Kod održavanja je bitno redovito provjeravati funkciju i učinak čišćenja četki prije početka sjetve i u međuvremenu.
Zalijepljene ćelijske pločice uzrokuju pogreške doziranja pri sjetvi uslijed čega se dozira manje sjemena za sjetvu. Bočni poklopac s četkama za čišćenje se može skinuti i kada je spremnik za sijanje pun. Zalijepljene ćelijske pločice se mogu čistiti i u ugrađenom stanju. U uputama za rad se preporučuje demontiranje četki za čišćenje taloga pri uobičajenoj sjetvi.

5.6. Sjetvena jedinica s ulagačima

Sjetvena jedinica s ulagačima sastoji se od sjetvenog kraka, ulagača za sjeme i pritiskajućeg valjka (slika 18.).
5.6.1. Sjetveni krak

Sjetveni krak je uvučen u gumene ležajeve koje nije potrebno održavati. On povezuje ulagač za sjeme i pritiskajući valjak s glavnim okvirom i prenosi pritisak ulagača. Za lakši vučni rad i točno otvaranje sjetvenog kanala ploče su postavljene pod kutom sprijeda, jedna prema drugoj pod manjim prednaponom. Ulagači s dvije ploče prave gredicu za polaganje sjemena i otvaraju sjetveni horizont. Između ploča se stavlja sjeme za sjetvu i lagano pritišće ugrađenim izjednačivačima dok strugač čuva međuprostor od onečišćenja. Strugač se može postaviti naknadno te se namještane, učinak i habanje istoga moraju redovito kontrolirati.

Proizvođač u svojim uputama za rad govori da kad je zemlja vlažna ili meka prednapon sjetvenih ploča ne smije biti prevelik kako se ploče ne bi blokirale i koristile jednostrano. Po potrebi se može naknadno postaviti podložna pločica. Kod trošenja sjetvenih ploča smanjuje se prednapon, odnosno ploče se više ne dodiruju. Tada se sjetvene ploče (diskosni ulagači) moraju obnoviti ili se ponovno mora namjestiti prednapon uklanjanjem podložnih pločica.

5.6.2. Izjednačivač

Izjednačivač pozicionira sjeme u gredicu i lagano je pritisne. Pri vlažnim uvjetima i u ljepljivoj zemlji izjednačivač može preuzimati ostatke. Tada ga treba demontirati. Ako je stroj spušten, ne smije ga se voziti unazad kako se ne bi oštetio izjednačivač.

5.6.3. Pritiskajući valjci

Pritiskajući valjci su učvršćeni na sjetveni krak pomoću rasterskog ozubljenja. Oni preuzimaju odvod sjemena duboko u gredicu i pokrivaju ga finom zemljom koju zatim utiskuju na sjeme. Strugač čuva pritisne valjke od onečišćenja. Strugač se po potrebi može naknadno namjestiti. Ako pritiskajući valjci u uvjetima kad je zemlja mekana ili pjeskovita, ne vrše odvod sjemena duboko u gredicu, mogu se zamijeniti pritiskajućim valjcima širine 10 cm.
5.7. Markeri

U sjetvi ratarskih kultura potrebno je osigurati ispravno spajanje prohoda, a posebno pri sjetvi ili sadnji okopavina zbog njege i berbe. Sijačice su zbog toga opremljene uređajima koji ostavljaju trag na pripremljenome tlu. Poznate su različite izvedbe uređaja, a najzastupljeniji su u obliku tanjura ili raončića. (Zimmer R. i dr., 2009.)

5.7.1. Podešavanje markera

Svi markeri moraju biti podešeni kod prve instalacije na radnu širinu. Markiranje se kod sijačice „Horsch Pronto 6 DC“ vrši po sredini traktora.

Duljina podešavanja markera traga proizlazi iz pola širine stroja plus pola odstojanja ulagača mjereno od sredine vanjskog šiljka.

Npr.: 600 cm (radni zahvat agregata) : 2 = 300 cm
300 cm + 7,25 cm = 307,25 cm

Iz ovog izračuna vidimo da markeri na sijačici „Pronto 6 DC“ moraju biti namješteni na 3,07 m od sredine vanjskog šiljka.

5.8. Tehnološke trake ili stalni tragovi

Prema Zimmer R. i dr., (2009.), tehnologija sjetve strnih žitarica uspostavljanjem stalnih tragova ili tehnoloških traka je nužnost, a planira se na bazi zahvata raspoloživih strojeva za gnojidbu, njegu i zaštitu bilja. Sustav stalnih tragova temelji se na isključivanju pojedinih sjetvenih aparata sijačice, čime se uspostavljaju neposljene trake širine 37,5 cm za prolaz kotača agregata. Ostavljanjem stalnih tragova nezasijana površina ne bi smjela biti veća od 4,17 %. Danas sve moderne sijačice za sjetvu strnih žitarica pored uređaja za
uspostavljanje stalnih tragova imaju elektronički uređaj, pomoću kojega se kontroliraju i podešavaju sve funkcije sijačice.

5.9. Kalibriranje

Kalibriranje se obavlja samo kada je stroj spušten i nepokretan. Preporučeno je da se za sjeme ne upotrebljavaju ljepljiva sredstva za tretiranje jer ona utječu na točnost doziranja. Također treba pripaziti na strana tijela u sjemenu i u spremniku.

Ovisno o sjemenu potrebno je ugraditi četke za čišćenje taloga ili odbojni lim. Prije kalibracije kontroliraju se svi bočni poklopci na dozatoru. Prema količini sjemena ugrađuje se odgovarajući rotor i provjerava njegovo slobodno okretanje. Zatim se provjerava stanje i podešenost brtvene usne. Prije same kalibracije još se samo napuni spremnik sjemenom i preporučljivo je da se kod finog sjemena napune samo male količine. Kalibracija započinje otvaranjem zaklopke na injektorskoj komori i kada sjeme počne izlaziti u prethodno obješenu vreću za kalibriranje (slika 19.).

Slika 19. Ispuštanje sjemena u vreću (Izvor: vlastita fotografija)

Pri vaganju treba voditi bragu da je masa vreće 1.100 g, te ju treba oduzeti od izvagane mase kako bi se dobila realna masa sjemena. Kada se zaustavi izlaženje sjemena iz injektorske komore, računalo očita koliko je ispustilo sjemena, što se uobičajeno ne podudara s izvaganom masom. Izvagana masa se oduzme od onih vrijednosti koju je računalo pokazalo te se unese u računalo (slika 20.) zajedno s onom vrijednosti koju mi
želimo da je utrošak kg/ha i tada računalo izvrši kalibraciju i nakon svih radnji oko samog stroja, vraćanja u pogon, može se nastaviti sa sjetvom.

5.10. Podešavanje za rad

5.10.1. Dubina sjetve

Dubinu sjetve određuje postavka visine stroja na hidrauličnim cilindrima i postavka tlaka na ulagaču sijačice. Usklađivanje mogućnosti podešavanja mora se prilagoditi uvjetima tla i zato se obavlja samo na polju u radnom položaju. Dubinu određuju alumijske kopče posebno obojane, na hidrauličnim cilindrima, prikazano na slici 21.

5.11.2. Pritisak ulagača

Što je tlo tvrde i što se sjeme dublje izbacuje, to je potreban veći pritisak. Pri spuštanju se težina stroja prenosi na okvir sijačice.

Pritom stvoren pritisak prenosi se gumenim elementima na ulagač i pritiskajući valjak. Naljepnica prikazuje kombinaciju boja aluminijskih kopči za sljedeći stupanj namještanjena.

Kod podešavanja pritiska može se odvijanjem vretena (slika 22.) za podešavanje povećati pritisak ulagača. Ako se ulagač optereti prevelikim pritiskom, postići će se suprotni učinak i pritiskajući valjci lagano će podignuti okvir ili će pritiskajući valjci utonuti u tlo i neće osigurati točno vođenje dubine.

Slika 22. Ručica za podešavanje pritiska ulagača (Izvor: Uputa za rad, Art.: 80441702 hr)

Namještanje hidrauličnog cilindra i podešavanje pritiska ulagača međusobno se dopunjavaju i utječu jedno na drugo. Promjene na hidrauličnom cilindru djeluju pretežno
na dubinu sjetve, ali i na pritisak ulagača i pritisne valjke. Promjene u podešavanju pritiska ulagača djeluju pretežno na ulagač i pritisne valjke, ali utječu i na dubinu sijanja. Zato se pri svakoj promjeni mora provjeravati dubina sjetve i djelovanje pritiskajućih valjaka i vođenja dubine.

5.11.3. Podešavanje dubine

Preporučuje se da se postupno dovede do ispravne podešenosti. Prvi korak je da se vrati podešavanje pritiska ulagača na mali pritisak. Na hidrauličnim cilindrima se ujednači jednak broj i kombinacija boja aluminijskih kopči. Provjera dubine se vrši tako da se spusti stroj u radni položaj na aluminijske kopče i vozi nekoliko metara po polju, zatim se provjeri dubina prodiranja i sabijanje preko pritiskajućih valjaka. Po potrebi se povećava pritisak ulagača i opet se vožnjom nekoliko metara provjerava podešenost dubine. Ako se u području podešavanja pritiska ulagača ne pronađe željena postavka, postupak se mora ponoviti sa sljedećom postavkom dubine na hidrauličnom cilindru sve dok se ne pronađe ispravno podudaranje.

5.12. Radna brzina

Sijačicom „Pronto DC“ može se voziti velikim radnim brzinama koje se kreću od 15 do 20 km/h. Brzina ovisi o uvjetima polja, vrsti tla, ostacima usjeva, sjemenu, količini sjemena i drugim čimbenicima. Kod teških uvjeta rada preporuka proizvođača je da se vozi sporije, između 10 i 15km/h. Brzina pri sjetvi nije konstantna već ovisi o terenu, vrsti kulture koja se sije i ostalim čimbenicima. Na slici 23. je prikazan zaslon računala koji očitava trenutnu brzinu te je u datum trenutku izmjerenica brzina od 17,1 km/h.
5.13. Okretanje

Kod sjetve bi tek kratko prije podizanja stroja trebalo smanjiti broj okretaja, kako snaga ventilatora ne bi previše opala te da se ne bi začepila crijeva. Tijekom vožnje je bitno podići stroj, kako je prikazano na slici 24. Poslije okretanja stroja oko 2-5 m prije sijanja gredice stroj se spušta s odgovarajućim brojem okretaja ventilatora. Sjemenju je potrebno nešto vremena da od dozatora dođe do ulagača. Radna sklopka oslobađa signal tek kada se tlak podizne hidraulike spusti ispod 50 bar.
5.14. Nakon sjetve

Spremnik za sjeme i uređaj za doziranje bi poslije sjetve trebalo isprazniti i očistiti. Sjeme i sredstva za tretiranje sjemena u toku noći mogu se navlažiti i slijepiti što može dovesti do začepljenja u spremniku za sjeme i do toga da se zalijepe ćelije rotora. Pri tome mogu nastati pogreške pri doziranju i sjetvi. Spremnik za sjeme može se isprazniti na poklopcu za pražnjenje na lijevoj strani gdje se postavi odgovarajući spremnik ispod i otvori se zaporni zasun. Preostala zaliha se može isprazniti kroz okomitu komoru.

5.15. „DrillManager ME“

„Horsch DrillManager ME“ je elektronička upravljačka jedinica za sijačice i njihove komponente. Ona regulira, nadzire i upravlja sve priključene komponente na sijačici.

„DrillManager ME“ je kompletan sustav u kojemu se komponente priključene ovisno o opremi trebaju samo aktivirati. On se u potpunoj opremi sastoji od sljedećih komponenti:
- Računalo
- Zaslon računala (slika 25.)
- Komponente ovisno o tipu stroja te oprema za:
 - Jedan do tri pogona za doziranje za sjeme za sjetvu, gnojiva ili tekuće gnojivo
- Hidraulično upravljanje za podizanje, rasklapanje i upravljanje markerom traga
- Upravljanje pola strane
- Nadzor protoka sjemena
- Osjetnici za:
 - Ventilator
 - Brzina rada (radar)
 - Dojavljivač praznog spremnika (2 kanala)
 - Priklučak za radni signal
 - Prekidač za kalibriranje

Sve komponente i osjetnici su kabelskim snopom (slika 26.) spojeni s računalom i zaslonom računala. Računalo preuzima informacije, obraduje ih i pokazuje radno stanje i podatke na zaslonu računala. Ukoliko se dobiju manje ili veće vrijednosti od unesenih ili stalnih vrijednosti, odnosno pri kvarovima prikaz se na zaslonu računala prekida i prikazuje kvar. Pri tome pokazuje odgovarajuću komponentu i prekoračenu graničnu vrijednost.

Slika 26. Kabelski snop (Izvor: Uputa za rad, Art.: 80661703 hr)

Zavisno od izvedbe, jedan ili dva računala su ugrađena u stroju. Naljepnice na računalu pokazuju verziju „hardvera“ i „softvera“. Održavanja kod ovog sustava ne postoji, jedino kod pranja stroja treba se pripaziti na računalo i kablovске spojeve. Računalo, utikač i električni sastavni dijelovi se nečiste visokotlačnim čistačem ili izravnim mlazom vode jer mogu trajno uništiti električne spojeve.
5.16. Održavanje stroja

Rukovatelj koji upravlja sijačicom „Horsch“ i vlasnik OPG-a potvrđuju da se pridržavaju naputka za rukovanje i održavanje – „Upute za rad“, priloženih uz sijačicu. Prije radova održavanja i njege, stroj se postavi na ravnu i nosivu podlogu te se osigura od kotrljanja. Zatim se ispušta tlak iz hidrauličnog uređaja i podupire radni uređaj. Prije čišćenja stroja visokotlačnim čistačem pokriju se svi otvori, u koje zbog sigurnosnih ili funkcijskih razloga, ne smije prodijeti voda, para ili sredstvo za čišćenje. Važna napomena proizvođača je da se novi strojevi ne peru parnim ili visokotlačnim čistačima jer se lak stvrdnje tek nakon 3 mjeseca, a prije tog roka bi se mogao oštetiti. Mlaz vode se ne usmjeruje direktno na električne ili elektronske komponente, na ležajeve ili ventilator. Nakon što je stroj opran i očišćen od svih nečistoća provjerava se jesu li svi hidraulični vodovi zabrtvljeni, a spojevi pritegnuti. Uvijek je bitno potražiti mjesta koja su izgrebana ili oštećena te takve nedostatke odmah ukloniti kako kasnije ne bi došlo do većih i skupljih problema. Kada se odvijaju radovi na električnom uređaju bitno ga je odvojiti od strujnog kruga. Pri radovima zavarivanja na stroju treba odspojiti kabel od računala i drugih elektronskih komponenti. Spoj mase se stavlja što je moguće bliže mjestu zavarivanja. Pri radovima njege i održavanja ponovno se pritežu otpušteni vijčani spojevi.

5.16.1. Čišćenje stroja

Da bi se dobila spremnost za rad i postigle optimalne performanse, radovi čišćenja i njege se izvode u pravilnim vremenskim razmacima. Hidraulične komponente i ventilatore kao i hidraulične cilindre i ležajeve se ne čisti visokotlačnim čistačem ili izravnim mlazom vode jer kućišta, vijci i ležajevi nisu vodonepropusni pri visokom tlaku. Stroj se pere izvana vodom kako bi voda koja je ušla mogla izaći van kroz ispusnu komoru ispod dozatora koja se naknadno otvori. Nadalje, četkom se očiste ćelijski rotor u dozatoru, a komprimiranim zrakom se ispušu ulagači, vodovi za sjeme, dozator i ventilator. Za vrijeme korištenja suhog ili tekućeg gnojiva bitno je temeljito očistiti komponente te ih isprati zbog toga što su gnojiva veoma agresivna i mogu uzrokovati koroziju.
5.16.2. Intervali održavanja

<table>
<thead>
<tr>
<th>Pregled održavanja Pronto 3 DC - 6 DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>nakon prvih sata rada</td>
</tr>
<tr>
<td>Svi vijčani i učini spojevi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tijekom korištenja</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator</td>
<td>zabravljenost, funkcija, podešavanje troja okreta</td>
<td>tijekom korištenja</td>
</tr>
<tr>
<td>Zaštita redakta ventilatora</td>
<td>očistite od prijavljenog</td>
<td>po potrebi</td>
</tr>
<tr>
<td>Koše s kićnicama</td>
<td>provjerite stanje i učvršćivanje, očistite od prijavljenog</td>
<td>prije korištenja</td>
</tr>
<tr>
<td>prilagodite pogonsku priručnicu (prvi puta 50 sati)</td>
<td>godišnje</td>
<td></td>
</tr>
<tr>
<td>hidraulički priključci i crijeva</td>
<td>zabravljenost svih komponenti, izgubljena mjesta</td>
<td>prije korištenja</td>
</tr>
<tr>
<td>Povratni tok ulja</td>
<td>povratni tlak maks. 8 bara</td>
<td>tijekom korištenja</td>
</tr>
<tr>
<td>Ventilator s pumpom s poognom na priključno vratilo</td>
<td>provjerite razina ulja</td>
<td>prije korištenja</td>
</tr>
<tr>
<td></td>
<td>podešite prigušnu zazluku za struju zraka</td>
<td>prije korištenja</td>
</tr>
<tr>
<td></td>
<td>promjenjene ulje i filtre (povratni tlak veći od 2 bara)</td>
<td>4 godine</td>
</tr>
</tbody>
</table>

Pneumatika

<table>
<thead>
<tr>
<th>Ventilator, crijeva za ujaguanje i okomita komora</th>
<th>zabravljenost, mjesta prijagavanja i izgubljena mjesta, začepljenje</th>
<th>prije korištenja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razvođnik</td>
<td>provjerite zabravljenost, začepljenost</td>
<td>prije korištenja</td>
</tr>
<tr>
<td>odvijač zraka (izbušeni lim)</td>
<td>provjerite učvršćivanje i začepljenost</td>
<td>prije korištenja</td>
</tr>
<tr>
<td>Magnetske zasićke ili motorni zasun</td>
<td>Proverite funkciju uključivanja</td>
<td>prije korištenja</td>
</tr>
<tr>
<td>Omotak rebovka (samo štovariški spravnik)</td>
<td>provjerite požasićki i čvrsti dosjed zaslopci</td>
<td>prije korištenja</td>
</tr>
</tbody>
</table>

Dosator

Rotor i brvna usna	provjerite stanje, podešenost i habanje	dnevno
Ležaj u motorni i poklopec kučića	provjerite stanje i pokretnost	prije korištenja
Čete za sjeme	Proverite stanje i funkciju - demontiranje kada se ne koristi	prije korištenja
Grubo sjemenje	Ugradite odbojni lim	prije korištenja

Hladnica

Rasnijek i pritiski valjci	Proverite stanje, čvrsti dosjed i habanje	prije korištenja
Strugac na rasnijekima i pritiskim valjima	provjerite stanje, podešenost i habanje	prije korištenja
Marker traga i marker za vozni prolaz	Proverite stanje, čvrsti dosjed, funkciju i pokretnost	prije korištenja
Držajte, šnijci itd.	Proverite stanje, čvrsti dosjed, podešavanje i habanje	prije korištenja
Vreteno za podešavanje	Proverite podešavanje i pokretnost, vreteno naužiti	prije korištenja

Hidraulički uređaj i komponente

| Hidraulički uređaj i komponente | provjerite zabravljenost, mjesta prijagavanja i izgubljena mjesta, funkciju | prije korištenja |

Paker valjak

Gume	Proveriti stanje, učvršćivanje i tlak zraka (2.0 bara)	prije korištenja
Vrata paker valjaka	provjerite stanje, učvršćivanje i pokretnost	prije korištenja
Kočnica		

Kočnica, diskovi i kočjane obloge

| Kočnica, diskovi i kočjane obloge | Proveriti stanje i habanje | prije korištenja |

Kočnjena tekućina

| Kočnjena tekućina | Proveriti stanje pumpa i nepropusnost spremnika | prije korištenja |
| Kočnjena tekućina | Ispustite vodu | dnevno |

Pregled održavanja Pronto 3 DC - 6 DC

<table>
<thead>
<tr>
<th>Stroj</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Osvjetljene i uporabavljene ploče</td>
<td>provjerite stanje i funkciju</td>
<td>prije korištenja</td>
</tr>
<tr>
<td>Uporabavljene in sigurnost ploče</td>
<td>provjerite da li postaje in njihovo čistost</td>
<td>prije korištenja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nakon sezone</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciglast stroj</td>
<td>provedite radove rijeke i čišćenja</td>
<td></td>
</tr>
<tr>
<td>Električni uporabljavki uređaj (DitManager)</td>
<td>suho ga uskladišite</td>
<td></td>
</tr>
<tr>
<td>Ciglast stroj</td>
<td>premašije izlaz (pokrijte gumene elemente) i po mogućnosti smanjite pod krov</td>
<td></td>
</tr>
<tr>
<td>Ležaj ulje kupole stolovih bloča</td>
<td>Ležaj popravi penetracionim uljem, npr. WD 40</td>
<td>nakon čišćenja</td>
</tr>
<tr>
<td>Kipnača hidrauličkog cilindra</td>
<td>Kipnača zaštititi penetracionim uljem ili drugim sredstvima od korozije</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nakon 3-5 godina</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidraulički crijeva podzide hidraulički</td>
<td>provjerite prema Smjernicama o strojevima Priloga I EN 1533</td>
<td></td>
</tr>
</tbody>
</table>

Slika 27. Pregled održavanja sijačice „Horsch Pronto 3 DC – 6 DC“ (Izvor: Uputa za rad, Art.: 80441702 hr)
5.17. Garažiranje

Ukoliko stroj treba stajati duže vrijeme, nužno ga je skloniti od nepovoljnih vremenskih prilika ispod krova, po mogućnosti u halu kao na slici 28. te je vrlo važno skinuti teret s kotača. Otvori se zaklopka za pražnjenje te se potpuno isprazni i očisti spremnik sjemena i gnojiva. Električni upravljački uređaji se odspojte i spreme na suho mjesto.

(Izvor: Ivica Hovanjec)

Stroj je potrebno zaštititi od korozije. Za prskanje se koristi samo biološki lagano razgradivo ulje, npr. ulje uljane repice. Proizvođač napominje da se plastični i gumeni dijelovi ne prskaju uljem i sredstvom za zaštitu od korozije jer bi dijelovi mogli postati lomljivi i oštetiti se.
6. KRONOMETRIRANJE

Snimanje radnog vremena tj. kronometriranje izvodi se radi utvrđivanja elemenata radnoga vremena. Brkić i sur. (2005.) navode kako vrijeme možemo podijeliti na pet skupina i nekoliko podskupina:

- Osnovno radno vrijeme
- Pomoćno dopunsko vrijeme
- Pripremno – završno vrijeme
- Vrijeme puta do radnog mjesta i natrag
- Gubici - prekidi u radu.

Što je vrijednost koeficijenta iskorištenja radnog vremena veća, bolje je iskorištenje vremena. Nizom istraživanja vrijednost koeficijenta iskorištenja vremena iznosi u prosjeku za sve radove od 0,45 do 0,75 (Brkić i sur., 2005). Kako bi se postiglo poboljšanje iskorišćenosti radnog vremena potrebno je uskladiti sve tehnološke operacije. Kronometriranje sijačice „Horsch Pronto 6 DC“ je obavljeno kroz dva (2) mjerenja na OPG-u „Jelošek Zlatko“. Nakon mjerenja uočeno je kako sijačica „Horsch Pronto 6 DC“ radnog zahvata 6 m ima radni učinak prosjeka 6,89 ha/h sa koeficijentom iskorištenja vremena \(\tau \) u iznosu od 0,63. Radni učinak kronometriranog priključka je prosječne vrijednosti.

Nakon kronometriranja uočena su određena odstupanja kod radnih učinaka promatranoga priključka. Tijekom vršenja izračuna za sijačicu uočeno je kako zbog velike udaljenosti parcele od ekonomskog dvorišta i punjenja spremnika sjemenom koji međuostalim zahtjeva i kalibraciju dolazi do velikih vremenskih gubitaka. Na početku sjetve također su uočeni veliki vremenski gubici pri podešavanju dubine sjetve.
7. ZAKLJUČAK

Novija vremena u poljoprivredi zahtjevaju i povećanje opsega rada. Tako se smanjenjem cijena na tržištu povećava potreba za većom količinom proizvodnih površina, kako bi proizvođač mogao opstati i natjecati se s ostalim „velikim igračima“. Povećanje površina zahtjeva i modernu tehnologiju. Pod modernu tehnologiju se smatraju strojevi s velikim radnim zahvatom te koji u što manjoj jedinici vremena obrađuju što veći posao uz minimalne ljudske napore. Jasno je vidljivo kako strojevi napreduju iz godine u godinu iz primjera univerzalne žitne sijačice. U roku od par desetaka godina postiglo se to da za pripremu sjetve i samu sjetvu više ne treba nekoliko traktora, nekoliko različitih strojeva i nekoliko ljudi, već jedan agregat poput „Horsch Pronto 6 DC“ zamjeni 3 različita stroja, te smanji potrošnju goriva također za tri puta. S financijskog aspekta gledano, cijena od 100.000 € uz traktor koji je potreban za agregiranje ovog stroja je za većinu OPG-a preveliki trošak. Nadalje, sijačica „Horsch“ ima mnogo pozitivnih karakteristika, a to su: velike radne brzine do čak 20 km/h, veliki spremnik sjemena što znači sijanje velikih površina bez stajanja i dodatne ljudske snage, satelitsko navođenje gdje računalo izračunava točnu površinu preklapanja i omogućava smanjenu potrošnju goriva i sjemena. Sve ove pozitivne karakteristike ovog stroja su uglavnom karakteristike svih novijih strojeva, što označava smjer u kojem nove tehnologije idu, a to su što veće uštede i što precizniji rad na proizvodnim površinama.
8. POPIS LITERATURE

2. Horsch, (2012.): Pronto 3 – 6 DC, Uputa za rad: Art.: 80441702 hr

3. Horsch, (2008.): DrillManager Me, Uputa za rad: Art.: 80661703 hr

9. SAŽETAK

Ključne riječi: sijačica, sjetva, uljana repica, podešavanje sijačice, održavanje sijačice, kalibracija
10. SUMMARY

The aim of this research, was with the time measuring methods of sowing machine "Horsch Pronto 6 DC" in the sowing of rape, on the family farm "Jelošek Zlatko" was to analyze the most important technical parameters of this sowing machine. It was found that the greatest loss of time was during the driving from the economic yard to the field and return. Waste of time during refueling and calibration is not disregard. With increased working width of sowing machine, increases the performance, but the results are more expensive machines and expensive maintenance of them.

Key words: sowing machine, sowing, rape, adjustment of sowing machine, maintenance of sowing machine, calibration
11. POPIS SLIKA

1. Slika 1. Uljana repica „Hybrirock“ hibrida (Izvor: Internet - link 1.)

4. Slika 4. Podmazivanje radnog stroja mazalicom (Izvor: vlastita fotografija)

5. Slika 5. Očitavanje podataka sa zaslona računala na kraju sjetve prve parcele (Izvor: vlastita fotografija)

7. Slika 7. Sijačica „Horsch Pronto 6 DC“ i traktor „Claas Axion 850 u radu“ (Izvor: vlastita fotografija)

8. Slika 8. Unutrašnjost spremnika (Izvor: vlastita fotografija)

10. Slika 10. Motor ventilatora (Izvor: Uputa za rad, Art.: 80441702 hr)

11. Slika 11. Stezni konus (Izvor: Uputa za rad, Art.: 80441702 hr)

12. Slika 12. Injektorska komora (Izvor: Uputa za rad, Art.: 80441702 hr)

13. Slika 13. Razvodnik sjemena s magnetnim zaklopkama (Izvor: Uputa za rad, Art.: 80441702 hr)

15. Slika 15. Razvodnik s motornim zasunima (Izvor: vlastita fotografija)

17. Slika 17. Četke za čišćenje taloga (Izvor: Uputa za rad, Art.: 80441702 hr)

22. Slika 22. Ručica za podešavanje pritiska ulagača (Izvor: Upute za rad, Art.: 80441702 hr)

27. Slika 27. Pregled održavanja sijačice „Horsch Pronto 3 DC – 6 DC“ (Izvor: Uputa za rad, Art.: 80441702 hr)

12. POPIS TABLICA

1. Tablica 1. Popis mehanizacije kojom raspolaže OPG „Jelošek Zlatko“……………4
2. Tablica 2. Popis radnika i završena stručna sprema…………………………………5
3. Tablica 3. Tehnički podaci za sijačicu „Horsch Pronto 6 DC“……………………12
13. POPIS LINKOVA

TEMELNA DOKUMENTAICIJSKA KARTICA

Sveučilište Josipa Jurja Strossmayera u Osijeku
Poljoprivredni fakultet u Osijeku
Završni rad

KORIŠTENJE SIJAČICE „HORSCH PRONTO 6 DC“ U SJETVI ULJANE REPICE (Brassica napus) NA OPG-u „JELOŠEK ZLATKO“

MACHINE USE „HORSCH PRONTO 6 DC“ IN SOWING RAPE (Brassica napus) ON THE FAMILY FARM „JELOŠEK ZLATKO“

Ivan Šarić

Sažetak:

Ključne riječi: sijačica, sjetva, uljana repica, podešavanje sijačice, održavanje sijačice, kalibracija

Summary:

The aim of this research was with the time measuring methods of sowing machine "Horsch Pronto 6 DC" in the sowing of rape, on the family farm "Jelošek Zlatko" was to analyze the most important technical parameters of this sowing machine. It was found that the greatest loss of time was during the driving from the economic yard to the field and return. Waste of time during refueling and calibration is not disregard. With increased working width of sowing machine, increases the performance, but the results are more expensive machines and expensive maintenance of them.

Key words: sowing machine, sowing, rape, adjustment of sowing machine, maintenance of sowing machine, calibration

Datum obrane: