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1. INTRODUCTION 

 

The ecological status estimation of surface waters according to the Water Framework Directive 

(Directive 2000/60/EC; WFD, 2000) is based on the assessment of biological elements 

supported by hydromorfological, chemical and physicochemical elements. The phytoplankton 

as an extremely diverse, photoautotrophic group of organisms responsible for the majority of 

primary oxygen and organic carbon production in aquatic ecosystems (Reynolds, 2006) is one 

of the five biological quality elements proposed for ecological status assessment of surface 

waters. Phytoplankton species are good indicators of water quality because they reflect the 

changes very rapidly both in their quantitative and qualitative composition. Dynamics of 

phytoplankton are mainly determined by environmental changes occurring at different temporal 

scales (short-term and annual variations) and are regulated by both internal and external factors 

(Reynolds, 1993; Reynolds, 2006). 

Traditional phytoplankton monitoring based on the taxonomic level of community structure, 

including phytoplankton biomass and chlorophyll a concentration, appeared to be only partially 

useful for determining water quality. The main disadvantage of this approach is that numerous 

species of phytoplankton are included in the broader taxonomic groups despite their very 

different ecological properties (Reynolds et al., 2002). 

The monitoring of phytoplankton was supplemented with phytoplankton trait-based approaches 

which grouped species with similar morphological and functional properties. Several 

phytoplankton classification concepts were developed: the functional group (FG) classification 

(Reynolds et al., 2002; Padisák et al., 2009), the morpho-functional group (MFG) classification 

(Salmaso and Padisák, 2007) and morphology-based group (MBFG) classification (Kruk et al., 

2010; Kruk and Segura, 2012). 

According to physiological, morphological and ecological attributes of phytoplankton species, 

Reynolds et al. (2002) proposed an approach assigning phytoplankton species into functional 

groups (coda). Groups of species are defined with specific habitat, tolerances and sensitivities 

based on several different combinations of physical, chemical and biological properties of the 

water body environment (such as depth of mixing layer, light, temperature, P, N, Si, CO2, 

grazing pressure). The approach was further developed by Padisák et al. (2009) stipulating a 

detailed description of the typical misplacements and by modifying some of the original habitat 

templates and species allocations. Functional classification, altogether with more than 40 

groups (coda) described, simplifies the comparison of seasonal changes in various water body 
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types and evaluates the responses to environmental changes (Kruk et al., 2002; Naselli-Flores 

et al., 2003). The classification has been applied worldwide from temperate to tropical regions 

in different ecosystems, particularly in shallow lakes (Huszar et al., 2003; Mieleitner et al., 

2008; Rangel et al., 2009; Barone et al., 2010; Borics et al., 2012; Izaguirre et al., 2012; 

Crossetti et al., 2013; Hu et al., 2013). This classification was also shown as successful approach 

in monitoring the changes of phytoplankton in reservoirs (Fonseca and Bicudo, 2008; Borges 

et al., 2008; Becker et al., 2009a; Xiao et al., 2011), estuaries (Costa et al., 2009) and rivers 

(Borics et al., 2007; Abonyi et al., 2012; Stanković et al., 2012). 

Following the functional group classification, Padisák et al. (2006) developed the 

phytoplankton assemblage index (Q index) initially proposed to assess the ecological status of 

different lake types in line with the WFD (2000). The assemblage index provides 5 degrees of 

water quality based on the relative share of FG multiplied by factor number (F) defined for each 

FG. The most crucial step of the assessment is a determination of factor F values because they 

reflect values of FG in the reference condition of the studied water body (pristine status). The 

Q index was initially developed to assess the ecological status of different Hungarian lake types 

(Padisák et al., 2006). According to that time existing typology, there are 8 lake types in 

Hungary to which belong large lakes, alkaline lakes and oxbows outside flood control dams. 

Values of factor F were established for each functional group within all lake types. 

Hajnal and Padisák (2008) used the phytoplankton biomass and assemblage structure expressed 

by the Q index to reconstruct the history of water quality in Lake Balaton and to quantify the 

changes in water quality during the eutrophication and restoration phases. This research 

represents the first attempt at historical reconstruction of the ecological status and compares it 

with changes in trophic state and current water quality. The results showed that this method 

could be successfully used to reconstruct water quality from historical archives and it is helpful 

in defining reference condition of the water body. 

Up to now, the Q index was successfully applied to evaluate ecological status of various types 

of lakes (Demir et al., 2014; Teneva et al., 2014; Ochocka and Pasztaleniec, 2016; Ongun 

Sevindik et al., 2017) and other types of water bodies such as reservoirs (Crossetti and Bicudo, 

2008; Becker et al., 2009b; Becker et al., 2010; Wang et al., 2011; Çelekli and Öztürk, 2014; 

Molina-Navarro et al., 2014; Vieira et al., 2015; Silva and Costa, 2015; Santana et al., 2017) 

regardless of geographic regions. It should be emphasized that the Q index was successfully 

applied for assessment of the water bodies from existed lake types in Bulgaria according to the 

accepted typology (Belikinova et al., 2014). 
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Floodplain lakes, also known as oxbow lakes, fluvial lakes, river lakes, limnocren, crescent 

lakes (Dawidek and Ferencz, 2012 and cites therein) remain to be the least known group of 

water bodies due to their complexity and diversity. A floodplain lake includes every inland 

water body, whose basin originates from fluvial processes, and its limnological functioning 

derives from irregular, but periodical limnophases and potamophases (Dawidek and Ferencz, 

2012). Characterization of a floodplain lake is based on hydrogeological, hydrological and 

hydrochemical features. Due to the high anthropogenic impact, which includes the alteration of 

natural flow pulses, channelization, dredging, artificial levee construction, groundwater 

abstraction and enrichment with nutrients (wastewaters, nutrient inflow from agricultural 

areas), floodplains are nowadays one of the most threatened and sensitive ecosystems (Amoros 

and Bornette, 2002). The majority of large active floodplains have disappeared over the last 

two centuries, including up to 80% of the historical floodplain area along the Danube and its 

larger tributaries (Schwarz, 2010). 

Floodplain along the Middle Danube section, known as Kopački Rit Nature Park, is one of the 

largest preserved natural floodplains of the Danube River. A diversity of aquatic and wet 

biotopes composed of ephemeral and perennial water bodies, mostly channels, oxbows, 

marshes and shallow lakes, continuously changing the area covered by water depending on the 

inflow of riverine waters. One of the significant water bodies in this floodplain is Lake Sakadaš, 

the deepest water depression located in the western part of the floodplain. During the 1970s, 

when the first limological investigations were carried out in the Lake Sakadaš (primarily 

focused on the water quality and phytoplankton), high variability in physical and chemical 

parameters was detected by water quality assessment. High variabilities in parameters indicated 

the high anthropogenic impact on the lake due to the direct income of wastewaters from the 

surrounding agricultural areas, which resulted in rapid eutrophication and deterioration of the 

ecosystem (Gucunski, 1975). Efforts for protection of the whole floodplain habitats resulted in 

strong protection of the area with the status of Nature Park. Moreover, measures for the 

revitalization of Lake Sakadaš applied in 1984 included complete isolations from the incoming 

of wastewaters and sediment removal. 

During the past few decades, the lake was in eutrophic/hypertrophic state according to the 

OECD system (OECD, 1982) with yearly average of TP concentration higher than 100 µg L-1, 

water transparency less than 1.5 m, and maximum chlorophyll a concentration higher than 50 

µg L-1 (Mihaljević et al., 1999; Vidaković and Bogut, 2007; Horvatić et al., 2003; Stević et al., 

2005). The results of permanent monitoring of phytoplankton in the lake were carried out from 
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2003 till nowadays, showed that depending on the time scale occurrence, flood pulses can be a 

stimulating or a disturbance factor for phytoplankton development in Lake Sakadaš (Mihaljević 

et al., 2009). However, the intensity and duration of flooding can be qualified as the primary 

cause for the changes of phytoplankton assemblages in this floodplain lake (Stević et al., 2013). 

 

1.1.Study aim 

The aim of this study was to evaluate ecological status of the floodplain lake, Lake Sakadaš 

applying phytoplankton assemblage index. Due to the fact that there are no historical data for 

evaluation of pristine condition in this floodplain lake, current research of phytoplankton 

assemblages dynamic will be compared with the historical data of phytoplankton dynamics 

when the lake was under strong anthropogenic pressure. The hypothesis is that Q index will 

indicate changes between impacted and semi-natural conditions of the floodplain lake. 
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2. MATERIALS AND METHODS 

 

2.1. Study area 

Kopački Rit Nature Park is one of the largest conserved natural riverine floodplains located in 

North-East Croatia between the Drava and the Danube River (Figure 1.). It is internationally 

recognized as the Ramsar Area (No: 3HR002) protected by the Ramsar Convention and 

included in the Important Bird Area (IBA) list, covering approximately 180 km2. Since the 

Pleistocene and Holocene epochs, when the Kopački Rit was formed, its ecological equilibrium 

and existence depends on the flooding regime of Danube and Drava River (Tadić et al., 2014). 

The floodplain complex provides a diversity of biotopes composed of periodic and permanent 

water bodies, such as marshes/pools, ponds, swamps on organic soils, shallow lakes, riverside 

arms and natural channels. The hydrological dynamics of the floodplain is under the impact of 

horizontal (inflows and outflows) and vertical (precipitation, evaporation and transpiration) 

components of water balance (Tadić et al., 2014). 

The Drava River has a minor influence due to the high embankments constructed in the middle 

of the 20th century between the river and the floodplain (Bonacci et al., 2002). The intensity of 

the flooding primarily depends on the hydrological regime of the Danube, and it may occur in 

any season of the year. In the middle section, the Danube (1,410- 1,383 r. km) is a typical 

lowland river with the mean annual water level of 2.63 m and mean annual discharge of 2,085 

m3s-1 (from a database of daily recordings in the period 1987-2008 at the gauge station at river 

1,401.4 km). Generally, during the first half of the year (mid-spring), the flow of the Danube is 

the highest, while in the second half of the year (June-October) the flow is characterized by a 

decrease (Buijse et al., 2002). During low river water discharge, the permanent water biotopes 

in the floodplain are isolated from one another. 

The floodplain area can be divided into two subsystems due to the hydrological connectivity 

with the main river channel. Subsystem A is impounded by the river through the backwater 

system (side arm), while subsystem B through a network of perennial channels. According to 

Schwarz (2005), minor floods (3-3.5 m) inundate only 18% of the area in subsystem B, while 

extremely high floods (more than 5 m) inundate almost the whole floodplain area (more than 

90% of subsystem B).
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Figure 1. Location of the sampling site Lake Sakadaš in the study area Nature Park Kopački 

Rit. The dotted line marks the border of Nature Park Kopački Rit and dashed line marks the 

embankment of rivers Danube and Drava (arrows indicate the flow direction). Modified from 

Mihaljević et al. (2013).
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The study was carried out in the western part of the floodplain in the Lake Sakadaš (Figure 1., 

Figure 2.). The average depth of the lake is about 5 m and a maximum depth of ca. 12 m, with 

a surface water area of about 0.15 km2. It is in direct hydrological connection with the main 

river channel through two channels (Čonakut and Hulovo channels) with total length ca. 10 km, 

and it is close to the embankment which delineates the inundation area. Flooding of the lake 

begins when the Danube water level at the gauge station river 1,401.4 km rises above 3 m 

(Mihaljević et al., 1999). The mixing regime is closely connected to flood events, and thermal 

stratification is usually expressed during the summer (June-September), while during the winter 

months (December-February) the entire lake is ice-covered. 

In shallow parts of the lake, submerged macrophytes are well developed (Ceratophylum 

demersum L., Myriophyllum spicatum L. and Potamogeton gramineus L.). The common reed 

(Phragmites communis Trin.) occurs around the lakeshore adjoined by floodplain forests of 

white willow (Salix alba L.) and black poplar (Populus nigra L.). 

 

   

Figure 2. Sampling site Lake Sakadaš. (Pictures from Subdepartment of Water Ecology 

archives)
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2.2. Sampling and analysis of physical and chemical parameters 

Sampling was conducted at monthly intervals during the period from July 2011 to October 2012 

(except in February 2012) in the central part of Lake Sakadaš. The main studied physical 

parameters were water temperature, water depth, transparency, conductivity, pH and dissolved 

oxygen. Water temperature, pH, conductivity and dissolved oxygen were measured in situ at 

subsurface (ca. 0.2 m) using portable instrument Multi 340i WTW (Wissenschaftlich-

Technische Werkstätten, Weilheim, Germany). Water depth of the lake was measured using a 

weighted rope, and the transparency was estimated with a Secchi disc. Samples for the chemical 

analyses of ammonium (NH4
+), nitrates (NO3

-), nitrites (NO2
-), organic nitrogen (orgN), total 

nitrogen (TN) and total phosphorus (TP) were taken at a depth of ca. 0.2 m below the water 

surface. Chemical variables were analyzed in the laboratory according to standard methods 

(APHA, 1992). In order to determine the concentration (µ l-1) of chlorophyll a (Chl a), -b (Chl 

b) and -c (Chl c), sample of 1-L was carried on ice to the laboratory and filtered through 

Whatman GF/C glass fibre filters (Whatman International Ltd., Maidstone, England). Filtered 

samples were subsequently extracted with acetone. Absorbance was measured with a Hach DR 

2010 spectrophotometer (Hach Company, USA) at four different wavelengths (630, 645, 663 

and 750 nm). Chl a, -b and -c concentrations were calculated according to UNESCO (1966) 

and Strickland and Parsons (1972). 

Similar methods were applied during the period from July 1972 to September 1973 (except in 

August 1973), with data available in the doctoral thesis of Professor Dragica Gucunski 

(Gucunski, 1975). From the doctoral thesis, the following values of physical variables were 

available: water temperature, water depth, transparency, pH and dissolved oxygen. Values of 

chemical variables could not be used, wherein only their presence or absence is indicated. 

Daily records of Danube water level were obtained for the gauge station at river 1,401.4 km.
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2.3. Phytoplankton analyses 

Depth-integrated samples intended to assess the quantitative composition of phytoplankton 

were collected from the entire water column and fixed in situ with Lugol's acidified solution. 

Additional samples for qualitative taxonomic analysis were obtained with a 22.5 µm pore net 

and fixed with 4% formalin. Phytoplankton species were identified with light microscopic 

observations (Carl Zeiss Jena, Jena, Germany) using the standard literature for species 

determination (Hustedt, 1976; Hindák et al., 1978; Meffert et al., 1981; Anagnostidis and 

Komárek, 1985, 1988; Komárek and Anagnostidis, 1989). The taxonomic classification was 

updated with recent findings, and the nomenclature was updated according to Algaebase 

website (Guiry and Guiry, 2014). Quantitative assessment of phytoplankton was done 

according to Utermöhl (1958) using the inverted microscope (Axiovert 25, Carl Zeiss, Inc., 

Göttingen, Germany) at multiple magnifications (100×, 400×) counting 400 individuals. The 

counting unit was the individual (unicell, coenobium, filament or colony). Each species 

abundance was presented as the number of individuals per liter (ind. L-1). Biovolumes were 

calculated following Rott (1981) where individuals were measured and their volumes calculated 

by relating cell shape with the corresponding geometric body. Volume calculations of colonial 

organisms with mucilage included entire colonies together with mucilage. Biomass was 

estimated multiplying each phytoplankton species abundance with mean biovolume of species 

(Javornický and Komárková, 1973; Sournia, 1978) and expressed as milligrams per liter (mg l-

1) fresh mass. 

Historical data of phytoplankton quantitative analysis from July 1972-September 1973 was 

used from the doctoral thesis of Professor Dragica Gucunski (Gucunski, 1975) with her family's 

permission. Data of phytoplankton abundance (cell L-1) was converted to biomass (mg L-1), 

calculated according to cell biovolume of phytoplankton species database published by 

Gucunski and Popović (1984). Historical phytoplankton data was updated with currently used 

taxonomic classification and nomenclature. 
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2.4. Data analysis 

Each taxon, determined in the study period from July 2011 to October 2012 and in historical 

data from July 1972 to September 1973, was classified into the functional group proposed in 

the classification of Reynolds et al. (2002) revised by Padisák et al. (2009). The assemblage 

index (Q index) followed by Padisák et al. (2006) was applied to assess the ecological status of 

floodplain Lake Sakaš during the periods. 

The assemblage index was calculated according to the following formula: 

 

 

 

 

 

The relative share of FGs in total biomass was calculated, and factor numbers (F) were 

established for each FG registered in chosen periods. Factor number was determined in the 

range from 0 to 5. Determination of factor numbers was based on the previous knowledge and 

experience of experts, together with the literature data of phytoplankton composition in Lake 

Sakadaš from 1972 up to the present day. Given factor numbers were compared with F defined 

for similar water body types (Padisák et al., 2006; Crossetti et Bicudo, 2008; Becker et al., 

2010; Belkinova et al., 2014). According to the WFD requirements, values of Q index between 

0 and 1 were classified as bad, between 1 and 2 as tolerable, between 2 and 3 as medium, 

between 3 and 4 as good, and between 4 and 5 as excellent (Padisák et al., 2006). 

 

2.1. Statistical analyses 

Pearson's correlation coefficient was used to analyze the correlation between the physical and 

chemical parameters of the periods using Statistica 8.0 software (StatSoft, Inc., USA). 

Non-metric multidimensional scaling (nMDS) was used to display similarity between the 

biomass of phytoplankton FGs of chosen periods using the statistical program PRIMER version 

5.0 (Clarke and Warwick, 2001). Biomass of phytoplankton FGs was the square root 

transformed and applied on Bray-Curtis similarity coefficient. Increasing distance between 

samples in nMDS plot reflects higher dissimilarities between the biomass of FGs in the periods. 

𝑄 =   𝑝𝑖  𝐹

𝑛

𝑖=1

 

pi – relative share of functional groups in total biomass 

      pi = ni/N     ni: biomass of the i-th functional group 

                        N: total biomass 

F – factor number established for the i-th functional group 
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3. RESULTS 

3.1. Physical and chemical characterization of the environment 

Flooding dynamics of the river-floodplain system is determined by the fluctuation of the 

Danube water level. Daily courses of the Danube water level at river 1,401.4 km are shown in 

Figure 3. During the periods of July 1972-October 1973 and July 2011-October 2012, the 

floodplain was characterized by the periodical occurrence of limnophase (dry periods) and 

potamophase (flood periods). Flooding patterns were defined by the timing (season), duration 

of flooding and the total surface of the flooded area (Table 1.). 

Danube water level daily courses of chosen periods showed a statistically significant positive 

correlation (r = 0.27, p < 0.05), despite the higher maximal water level (5.84 m) and extremely 

high flooding (27 days in total) with more than 75% of the flooded area recorded in 1972-1973. 

Most extended flood with 81 days in continuum was present during the spring-summer period 

of 1973. The absence of flooding with 155 days in total characterized the longest dry phase of 

studied period 2011-2012. After the dry phase, short-time flood pulses were frequent during the 

late winter and spring with two major flood pulses (maximum 4.91 m). Extremely low Danube 

water level influenced the outflow of the water from the floodplain to the main channel, with a 

minimal water level of -0.30 m recorded in December 2011. In summer during 1973 and 2012 

floodplain went through a second dry phase during chosen periods, lasting till the end of the 

studies. 

 

Table 1. Danube water level (maximum, minimum and mean) and flooding dynamics of the 

river-floodplain system (categorization and duration) during the period of July 1972-October 

1973 and July 2011-October 2012. (*) Approximation after Mikuska (1979) and Schwarz 

(2005) 

Danube water level (WL, m)   1972-1973 2011-2012 

Maximum   5.84 4.91 

Minimum   0.55 -0.30 

Mean   2.45 2.06 

 
Flooding 

categorization 
Flooded area (%)* 

Flooding duration 

(days/period) 

3.0-3.5 Minor 20 48 48 

3.5-4.0 Moderate 40 43 38 

4.0-5.0 Major 75 39 20 

>5.0 Extremely high >90 27 0 

Total >3m   157 106 

>3 in continuum   81 28 



 

 

1
2
 

 

Figure 3. Daily courses of the Danube water level at 1,401.4 r. km during the period of July 1972-October 1973 (dashed line) and July 2011-

October 2012 (solid line). Flooding categorization is shown in Table 1.
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Table 2. Mean, minimum and maximum values of physical and chemical parameters in Lake 

Sakadaš during the period of July 1972-September 1973 and July 2011-October 2012. 

 

Variations of environmental parameters during the period of 1972-1973 (physical parameters) 

and 2011-2012 (physical and chemical parameters) are shown in Table 2. and Figures 4.-8. 

During the period 1972-1973, when Danube water level rose above 5 m and most of the 

floodplain area was flooded, the water depth of the lake reached 9.9 m. Lower water depth 

characterized the period of 2011-2012 with a maximum of 7.7 m. Water depth of the lake 

showed a significant positive correlation with Danube water level in 1972-1973 (r = 0.78, p < 

0.05) and in 2011-2012 (r = 0.73, p < 0.05). During the summer months, transparency values 

were minimal in both periods, while in the winter months transparency reached maximal values. 

Water temperature was in opposite trending than transparency, which resulted in a significant 

negative correlation of parameters in both periods (1972-1973 (r = -0.60, p < 0.05) and in 2011-

2012 (r = -0.78, p < 0.05)). Values of pH were higher than 7 during both periods indicating 

alkaline conditions. In the period of 1972-1973, pH and water temperature were in a significant 

positive correlation (r = 0.64, p < 0.05), while in 2011-2012 they were in a significant negative 

correlation (r = -0.54, p < 0.05). Higher mean value of dissolved oxygen was in 2011-2012, 

while in 1972-1973 values of dissolved oxygen were highly variable with a range from 2.2 to 

21.8 mg L-1. 

Parameter (abbreviation, SI) 
1972-1973 2011-2012 

Mean Min. Max. Mean Min. Max. 

Water depth (WD, m) 7.8 6.7 9.9 6.5 5.4 7.7 

Transparency (T, m) 0.9 0.2 1.8 1.0 0.7 1.9 

Water temperature (WT, °C) 16.0 3.0 30.0 18.4 4.1 30.6 

Dissolved oxygen (DO, mg L-1) 9.9 2.2 21.8 11.6 7.1 15.3 

pH 8.2 7.7 9.7 8.3 7.7 9.0 

Ammonium (NH4
+, µg L-1)    123.2 5.0 454.0 

Nitrates (NO3
-, µg L-1)    861.6 20.0 3,950.0 

Nitrites (NO2
-, µg L-1)    23.9 5.3 83.6 

Organic nitrogen (orgN, µg L-1)    2,047.1 322.6 5,600.0 

Total nitrogen (TN, µg L-1)    3,008.7 587.9 8,799.8 

Total phosphorus (TP, µg L-1)    211.8 60.7 422.0 

Conductivity (Cond, µS cm-1)    405.1 354.0 568.0 

Chlorophyll a (Chl-a, µg L-1)    45.5 14.3 90.8 

Chlorophyll b (Chl-b, µg L-1)    7.9 1.3 24.1 

Chlorophyll c (Chl-c, µg L-1)    16.5 4.1 40.5 
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Chlorophyll a in 2011-2012 oscillated between 14.3 to 90.8 µg L-1 and was in a significant 

negative correlation (r = -0.56, p < 0.05) with transparency. Maximal values of Chlorophyll a, 

b and c were measured in October 2011, while minimum values were measured in January and 

May 2012. Conductivity (354-568 µS cm-1) was in a significant negative correlation (r = -0.62, 

p < 0.05) with the water temperature. 

Chemical parameters of Lake Sakadaš in 2011-2012 were highly variable. Highest values of 

ammonium (454 µg L-1) and nitrates (3,950.0 µg L-1) were noted in December 2011 during the 

highest transparency. Values of ammonium and nitrates showed a significant positive 

correlation (NH4 (r = 0.55, p < 0.05); NO3 (r = 0.58, p < 0.05)) with transparency. 

Concentrations of total nitrogen were higher in 2012 with a maximum of 8,799.8 µg L-1. Values 

of total phosphorus had high oscillations (60.7-422 µg L-1) during the whole period of 2011-

2012. 
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Figure 4. Temporal variations of water depth and transparency in Lake Sakadaš during the 

periods of July 1972-September 1973 (dashed line) and July 2011-October 2012 (solid line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Temporal variation of water temperature in Lake Sakadaš during the periods of July 

1972-September 1973 (dashed line) and July 2011-October 2012 (solid line). 
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Figure 6. Temporal variation of dissolved oxygen in Lake Sakadaš during the periods of July 

1972-September 1973 (dashed line) and July 2011-October 2012 (solid line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Temporal variation of pH in Lake Sakadaš during the periods of July 1972-September 

1973 (dashed line) and July 2011-October 2012 (solid line). 
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Figure 8. Temporal variations of ammonium (A), nitrates (B), nitrites (C), total nitrogen (D), 

total phosphorus (E), conductivity (F) and Chlorophyll a (G) in Lake Sakadaš during the period 

of July 2011-October 2012.
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3.2. Taxonomical and functional diversity of phytoplankton 

A total number of 317 phytoplankton taxa were registered during the periods in Lake Sakadaš. 

Chlorophyta and Bacillariophyceae achieved high species richness (Figure 9.). During the 

period 2011-2012, Cyanobacteria were represented by 33 taxa and differed from 1972-1973 

with 23 taxa. In the period 1972-1973, there were 202 taxa identified with a range of 21 to 88 

taxa per sample (Figure 10. (A)) with high oscillations of phytoplankton biomass ranging from 

24.3 to 9,075.9 mg l-1 in addition to the mean value of 995.0 mg l-1. During the studied period 

2011-2012, 190 taxa were identified with a range of 26 to 85 taxa (Figure 10. (B)) and lower 

values of biomass ranging from 3.1 to 146.2 mg l-1 with the mean value of 34.5 mg l-1. Species 

number of 1972-1973 had a significant positive correlation with water temperature (r = 0.69, p 

< 0.05) and pH (r = 0.78, p < 0.05), while biomass significantly correlated with transparency (r 

= 0.59, p < 0.05), dissolved oxygen (r = 0.64, p < 0.05) and pH (r = 0.94, p < 0.05). Number of 

species in 2011-2012 significantly correlated only with water temperature (r = 0.60, p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Percentage of phytoplankton taxonomical groups based on the total number of species 

in Lake Sakadaš during the periods of July 1972-September 1973 (A) and July 2011-October 

2012 (B).
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Figure 10. Temporal variations in phytoplankton total biomass and number of species in Lake 

Sakadaš during the periods of July 1972-September 1973 (A) and July 2011-October 2012 (B) 
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The identified phytoplankton taxa were sorted into 28 functional groups (FG): A, B, C, D, E, 

F, G, H1, H2, J, K, L0, M, MP, N, P, S1, S2, SN, T, TB, W1, W2, WS, X1, X2, X3 and Y. 

Functional groups and representative species with their maximal contribution to total biomass 

within chosen periods are shown in Table 3. 

The period of 1972-1973 was characterized with 27 FGs of which 16 FGs had relative biomass 

higher than 5% (Figure 11. (A)). Groups B, D, G and S2 had the highest contribution to total 

biomass. Among 25 FGs from 2011-2012, 17 FGs had relative biomass higher than 5% (Figure 

11. (B)) with best-developed groups C, D and S1. Comparison of dominant species within FGs 

in both periods had shown a significant difference in five groups: B (Aulacoseira italica  

Lindavia comta), C (Asterionela formosa  Cyclotela meneghiniana), H1 (Anabaena 

planctonica  Cuspidothrix issatschenkoi), S1 (Limnothrix redekei  Planktothrix agardhii) 

and SN (Raphidiopsis mediterranea  Cylindrospermopsis raciborskii). In 1972-1973 group D, 

G, B and S2 had relative biomass higher than 70% of total biomass (Figure 12. (A)). In June 

1972 group D reached 83.75% of total biomass with the high dominance of centric diatoms 

Stephanodisucus hantzschii and Cyclostephanos dubius. Group G reached up to 82.98% of total 

biomass in July 1973 with the dominance of Eudorina elegans, Pleodorina illinoisensis and 

Pandorina morum. Dominant species Aulacoseira italica from group B was massively 

developed in June 1973 with 77.88% of total biomass. Group S2 with monodominant species 

Spirulina sp. reached up to 70.42% in September 1972. 

During the studied period 2011-2012 only three functional groups developed with a 

contribution to total biomass higher than 40% (Figure 12. (B)). Highest contribution to total 

biomass was recorded in September 2011 during the massive development of filamentous 

Cyanobacteria from groups S1, H1 and SN, when only the S1 reached up to 50.39% of total 

biomass with the dominance of Planktothrix agardhii (48.12%). Group H1 reached maximal 

contribution to total biomass of this group during the studied period with 23.00% of 

Dolichospermum sigmoideum in August 2012. Filamentous Cyanobacteria functional groups 

were present during the whole studied period with higher contribution of S1 group to the total 

biomass, except in June and July during the summer flood when phytoplankton composition 

was characterized with group D. Ulnaria ulna (31.48%) and Stephanodisucus hantzschii 

(4.43%) took dominant position during the whole period in group D. Group C with Cyclotella 

meneghiniana reached 48.69% of the total biomass in November 2011. 

Group Y was continuously present during the periods with the highest contribution to total 

biomass in March 1973 (65.25%) and March 2012 (37.22%). 
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Besides mentioned FGs, significant difference in species composition within FGs comparing 

two periods was also found in groups E, F, J, MP, T, W2 and X2. In May 2012 group J had a 

significant development with 24.08% of total biomass, while in the period 1973-1972, had a 

contribution to total biomass lower than 10%. Group W2 was highly contributed with 45.68% 

of the total biomass in December 1972 with dominant species Strombomonas annulata. 



 

22 

Table 3. The maximal contribution of functional groups and species to total biomass in Lake 

Sakadaš during the period of July 1972-September 1973 and July 2011-October 2012. 

 1972-1973 2011-2012 

Functional 

group 

Maximal 

contribution of 

FG to total 

biomass (%) 

Maximal contribution of species to total biomass (%) 

Maximal 

contribution of 

FG to total 

biomass (%) 

Maximal contribution of species to total biomass (%) 

A 1.83 Acanthoceras zachariasii (Brun) Sim. (1.83%) 2.38 Cyclotella sp. (2.38%) 

B 78.59 Aulacoseira italica (Ehrenb.) Sim. (77.88%) 1.39 
Lindavia comta (Kütz.) Nakov, Gullory, Julius, Theriot & 

Alverson (1.39%) 

C 0.60 Asterionella formosa Hass. (0.60%) 48.69 Cyclotella meneghiniana Kütz. (48.69%) 

D 83.75 

Ulnaria ulna (Nitz.) Comp. (66.45%); 

Stephanodiscus hantzschii Grun. (41.90%); 

Cyclostephanos dubius (Hust.) Round (41.28%) 

40.73 

U. ulna (35.59%); 

S. hantzschii (25.64%); 

Ulnaria acus (Kütz.) Aboal (6.19%) 

E 13.08 
Dinobryon divergens var. angulatum (Seligo) Brunnthaler 

(10.68%) 
1.87 Dinobryon divergens Imh. (1.87%) 

F 7.29 Oocystis marssonii Lemm. (6.78%) 5.35 Micractinium bornhemiense (W.Conrad) Korshikov (3.74%) 

G 82.84 

Eudorina elegans Ehrenb. (29.79%); 

Pleodorina illinoisensis Kofoid (27.22%); 

Pandorina morum (O.F.Müller) Bory (25.83%) 

  

H1 3.89 Anabaena planctonica Brunnthaler (2.00%) 24.38 

Cuspidothrix issatschenkoi (Usachev) P.Rajaniemi, Kom., 

R.Willame, P.Hrouzek, K.Kastovská, L.Hoffm. & K.Sivonen 

(21.79%); Dolichospermum sigmoideum (Nygaard) Wacklin, 

L.Hoffm. & Kom. (9.54%); Aphanizomenon flosaquae Ralfs 

ex Born. & Flah. (6.80%); Dolichospermum solitarium 

(Kleb.) Wacklin, L.Hoffm. & Kom. (5.94%) 

H2 0.53 Gloeotrichia sp. (0.53%)    

J 9.55 
Pediastrum boryanum var. boryanum (Turp.) Menegh. 

(6.63%) 
24.09 

Tetradesmus lagerheimii M.J.Wynne & Guiry (11.34%); 

Coelastrum microporum Nägeli (5.21%) 

K 0.04 Aphanothece elabens (Bréb. ex Menegh.) Elenkin (0.04%) 3.64 Aphanocapsa delicatissima West & G.S.West (3.64%) 

L0 6.63 Peridinium cinctum (O.F.Müller) Ehrenb. (4.45%) 10.38 
Peridinium aciculiferum Lemm. (6.75%); 

P. cinctum (5.29%) 

M 0.64 
Microcystis aeruginosa (Kütz.) Kütz. (0.32%); 

Microcystis wesenbergii (Kom.) Kom. ex Kom. (0.32%) 
6.83 M. aeruginosa (6.59%) 

MP 17.50 

Brachysira exilis (Kütz.) Round & D.G.Mann (11.52%); 

Gyrosigma macrum (W.Smith) J.W.Griffith & Henfrey 

(7.56%); Oscillatoria tenuis C.Agardh ex Gomont (5.92%) 

6.12 Amphora ovalis (Kütz.) Kütz. (5.57%) 

N 0.05 Cosmarium sp. (0.03%) 3.24 Cosmarium phaseolus Bréb. ex Ralfs (3.24%) 

P 10.79 

Staurastrum sp. (10.37%); 

Closterium macilentum Bréb. (8.58%); 

Aulacoseira granulata (Ehrenb.) Sim. (6.56%) 

11.82 A. granulate (7.89%) 

S1 1.43 Limnothrix redekei (Goor) Meffert (1.38%) 50.39 

Planktothrix agardhii (Gom.) Anag. & Kom. (48.12%); 

L. redekei (14.93%); 

Pseudanabaena limnetica (Lemm.) Kom. (9.97%) 

S2 70.42 Spirulina sp. (70.42%)   

SN 10.08 Raphidiopsis mediterranea Skuja (10.08%) 5.85 
Cylindrospermopsis raciborskii (Wol.) Seenayya & Subba 

Raju (5.85%) 

T 17.03 Mougeotia spp. (17.03%) 9.12 
Binuclearia lauterbornii (Schmidle) Proschkina-Lavrenko 

(7.98%) 

TB 3.55 Navicula rhynchocephala Kütz. (1.69%) 1.16 Navicula sp. (0.81%) 

W1 14.27 Lepocinclis ovum (Ehrenb.) Lemm. (13.09%) 7.90 L. ovum (6.97%); Euglena texta (Duj.) Hübner (6.77%) 

W2 45.68 

Strombomonas annulata (Daday) Deflandre (44.21%); 

Trachelomonas volvocina (Ehrenb.) Ehrenb. (5.93%); 

Trachelomonas hispida var. Crenulatocollis (Maskell) 

Lemm. (5.51%) 

4.13 T. volvocina (1.65%) 

WS 6.84 Synura uvella Ehrenb. (6.84%) 6.76 S. uvella (6.76%) 

X1 0.84 
Pseudodidymocystis planctonica (Korshikov) E.Hegewald 

& Deason (0.82%) 
4.58 P. planctonica (3.45%) 

X2 0.45 Chlamydomonas globosa J.W.Snow (0.45%) 16.57 

Carteria sp. (8.50%); Rhodomonas sp. (7.63%); 

Rhodomonas lacustris Pasch. & Rutt. (6.81%); 

Chlamydomonas sp. (6.09%) 

X3   5.50 Chrysococcus rufescens Klebs (3.69%) 

Y 65.25 
Cryptomonas erosa Ehrenb. (62.08%); 

Naiadinium polonicum (Wolosz.) S.Carty (46.93%) 
37.22 

Cryptomonas ovate Ehrenb. (27.87%); Cryptomonas sp. 

(21.76%); C. erosa (13.43%) 
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Figure 11. Dynamics of dominant functional groups on relative biomass in Lake Sakadaš during 

the period of July 1972-September 1973 (A) and July 2011-October 2012 (B). FGs with relative 

biomass higher than 5%.
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Figure 12. The maximal contribution to total biomass of best developed functional groups in 

Lake Sakadaš during the period of July 1972-September 1973 (A) and July 2011-October 2012 

(B).

(A) 

0% 20% 40% 60% 80% 100%

W2

Y

S2

B

G

D

(B) 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

J

H1

Y

D

C

S1



 

25 

 

 

Figure 13. Non-metric multidimensional scaling (nMDS) plot based on biomass of 

phytoplankton functional groups in Lake Sakadaš during the periods July 1972-September 1973 

and July 2011-October 2012. Circles indicate samples from 1972-1973, while triangles indicate 

samples from 2011-2012. Solid lines separate groups, dashed lines separate subgroups. 

 

The multivariate nMDS analysis displayed a clear separation of samples into three groups based 

on the biomass of phytoplankton FGs in the lake during 1972-1973 and 2011-2012 (Figure 13.). 

Group 2011-2012 encompassed samples from the period of 2011-2012 with the division in three 

subgroups characterized with Bacillariophyceae, Cryptophyceae and Cyanophyceae species. 

Lower biomass characterized subgroup with the dominance of Y, D, S1 and X2 groups 

including samples from December 2011-April 2012 with the highest contribution of group Y. 

The subgroup with the dominance of Y, J, D and S1 included samples from May-July and 

September-October 2012, while subgroup with the dominance of S1, H1, Y and D groups 

included samples from July-October 2011 and August 2012. 

Group 1972-1973 encompassed subgroup with samples from December 1972-February 1973 

and May 1973 with high contribution to total biomass of D and W2 group, and the subgroup 

with the dominance of Y and D (September-November 1972 and March-April 1973). 
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Group 1972-1973 with monodominant FGs represented samples with the dominance of one FG 

whose contribution was higher than 70% of the total biomass. 

Samples from November 2011 and August 1972 had high dominance of D group and were not 

included in any of current subgroups, but they were listed in current groups while they had more 

similarity with samples from the group than with one another. 

 

3.3. Phytoplankton assemblage index 

Factor numbers were determined for each functional group identified in Lake Sakadaš from the 

period of July 1972-September 1973 and July 2011-October 2012. Determined F values were 

presented in Table 4. with F values of similar water body types. 

Q index values of the lake in period 1972-1973 varied from 0.17 to 3.10 (Figure 14. (A)). The 

ecological status of the lake was under the medium classification during the most of the period, 

except in July and September 1973 when the lake was under the bad classification, December 

1972 and January in tolerable, and in May 1973 when it was in good condition.  

Q index values in the period 2011-2012 varied with season, changing the ecological status of 

Lake Sakaš from tolerable to good (Figure 14. (B)). The highest qualification with 3.68 

occurred in November 2011, and the lowest evaluation with 1.04 in September 2011 when the 

cyanobacterial bloom occurred. 

Mean values of Q index in chosen periods showed that Lake Sakadaš has medium ecological 

status. 
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Table 4. Factor number (F) of phytoplankton functional group of Lake Sakadaš with 

comparison to F for similar water body types: oxbow outside flood control dams (Hungary)-

Padisák et al. (2006); shallow eutrophic reservoir (Brazil)-Crossetti and Bicudo (2008), water-

supply reservoir (Brazil)-Becker et al. (2010); small and middle-sized lowland lakes (Bulgaria)-

Belkinova et al. (2014). 

Functional 

groups 

Factor 

numbers 

F (Padisák et 

al., 2006) 

F (Crossetti and 

Bicudo, 2008) 

F (Becker et 

al., 2010) 

F (Belkinova 

et al., 2014) 

A 5 5    

B 2 5   5 

C 5 5  3 5 

D 2 3 2 2 2.5 

E 5 5 5 5 5 

F 3 3 5 2 5 

G 0 4   3 

H1 1 1 1 0 1 

H2 3 3    

J 5 5 5 2 3 

K 2 2 3 4 3 

L0 5 5 5 4 5 

M 0 0 0   

MP 3 3  1 3 

N 5 5 5 5 5 

P 5 5 2 0 5 

S1 0 0 0 0 0 

S2 0 2   0 

SN 0 0 0   

T 5 5 5  5 

TB 5     

W1 2 2 0 0  

W2 0 3 1 1  

WS 3 4    

X1 3 3 5 3.5 2.5 

X2 3.5 3.5 5 5 3 

X3 4 4 4 5 5 

Y 3 3.5 3 3 3.5 
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Figure 14. Dynamics of Q index and ecological status evaluation of Lake Sakadaš during the 

period of July 1972-September 1973 (A) and July 2011-October 2012 (B).
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4. DISCUSSION 

 

A comparison of historical records (1972-1973) with recent data (2011-2012) showed important 

differences in the abundance and dynamics of the dominant phytoplankton assemblages in the 

investigated floodplain lake.  

As a consequence of strong anthropogenic influence in the past, the lake environment was 

dramatically deteriorated by the inflow of wastewaters from surrounding agricultural area. 

Large amounts of suspended matter supported the intensive decomposition process and resulted 

in the periodical appearance of the hypoxic condition and dramatically increase of pH. After 

four decades of water protection in the whole floodplain area and applied revitalization measure 

(sediment removal) in the lake, it seems that the lake has recovered. Investigations done in the 

past few decades showed that flooding dynamic, still preserved in its near-natural state, is the 

key ecological factor that influenced phytoplankton dynamics (Mihaljević et al., 2009). 

Moreover, the results of the effectiveness of the functional approach designed to explain the 

phytoplankton changes associated with hydrological events showed that the functional 

classification allows representing of the hydrological phases (Stević et al., 2013). The 

instrument applied to assess the changes in the ecological status of this floodplain lake, Q index, 

was applied because unlike other indices it can reflect general anthropogenic pressure (Padisák 

et al., 2006). Due to the known fact that determination of factor number (F) for each FG is the 

most sensitive step in defining of Q index (Belkinova et al., 2014), a comparison between FGs 

in impacted and semi-natural conditions allows to allocated lower values to FGs found to be 

the most expressive in the undesirable conditions. 

Given the dataset of phytoplankton functional groups and the main group arrangements in the 

multivariate nMDS analysis showed variation related to the past and recent condition. Heavy 

algal bloom (with extremely high biomass) of species assemblages from one FGs or bloom of 

only one species from particular FGs were the most distinctive feature of the environmental 

conditions in the past. The bloom of species from the group G (Eudorina, Pandorina, 

Pleodorina), when the relative biomass reached up to 80% of the total biomass, appeared in 

July 1973 in the highly alkaline conditions (pH 9.7). As was noted by Gucunski (1975), the lake 

water at that time had an intensively green color and “there was no fish in the lake”. During the 

summer of 1973, Kiss (1977) also recorded intensively algal bloom of Eudorina elegans in the 

Tisza dead-arm in strongly polluted salt and alkaline waters, containing large amounts of 

decomposing organic matters and qualified those ecological state as “eutrophication with a 
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dangerous extent”. Heavy polluted water has been widely recognized as a suitable environment 

for blooming of species from the group G. Almost monodominant Eudorina blooms were 

registered in the polluted shallow pond which receives large quantities of sewage from the 

nearby city (Munawar and Zafar, 1967). Immense bloom of Pandorina morum occurred in the 

Lake Erie (Laurentian Great Lakes), which has a long history of anthropogenic perturbation 

with excessive nutrient loading (Millie et al., 2009). According to Reynolds et al. (2002), habitat 

template for group G is characterized by nutrient-rich conditions in stagnating water columns, 

small eutrophic lakes and very stable phases in larger river-fed basins and storage reservoirs. 

Different weights of factor F were used in the qualification of the G in order to determine 

ecological status: value 4 for oxbow lakes outside flood control, value 0 for different types of 

alkaline lakes in Hungary (Padisák et al., 2006), value 3 for small and middle-size lowland lakes 

in Bulgaria (Belkinova et al., 2014) and value 1 for the reservoir in China (Wang et al., 2011). 

In this study, factor F with value 0 is used and calculated Q index for July 1973 is 0.17, 

reflecting the bad ecological status of the lake, which was affected by wastewaters and was in 

strongly alkaline condition. 

Another heavy algal bloom occurred thereafter (September 1973), formed by filamentous blue-

green alga Spirulina sp. (group S2), which was contributed more than 70% to the total biomass, 

confirmed heavy polluted conditions in the lake. It is known that Spirulina bloom occurs widely 

in polluted lakes, particularly in tropical and sub-tropical lakes with high salinity (El-Bestawy 

et al., 1996). Warm, shallow and often highly alkaline waters are habitat template for the group 

G (Reynolds et al., 2002) and it is clear that used factor F value for the group S2 is 0. Moreover, 

current research showed that the group S2 can be associated with other shade tolerant 

cyanobacterial species from SN assemblage, forming an S2-SN association in shallow 

polymictic tropical lakes (Gebrehiwot et al., 2017). Accompanied species from SN group during 

the bloom of Spirulina in the Lake Sakadaš was Raphidiopsis mediterranea. The occurrence of 

this subtropical cyanobacterial species was registered for the first time during summer 1973 in 

all floodplain habitats of Kopački Rit, and also in the main riverbed of the Danube (Gucunski, 

1975). The first appearance of Raphidiopsis mediterranea in the Lake Balaton was also noted 

in summer of 1973 (Padisák, 1992). However, after these findings there are no records of R. 

mediterranea in waters of Kopački Rit, in spite that distribution pattern of this species showed 

its continually spreading throughout various European freshwater ecosystems from the 

beginning of this century (Kaštovský et al., 2010). It should be emphasized that the morphology 

of Raphidiopsis is highly similar to that of Cylindrospermopsis, especially in the non-
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heterocytous life-cycle stages of Cylindrospermopsis species where heterocystes and kinetes 

are not formed (Li et al., 2001; Moustaka-Gouni et al., 2009; Alster et al., 2010). According to 

Moustaka-Gouni et al. (2009), R. mediterranea can represent non-heterocytous stages of 

Cylindrospermopsis complex life cycle. Thus, overlapping features of 

Cylindrospermopsis/Raphidiopsis have led to the difficulty in distinguishing these two genera 

by the traditional taxonomic approach. 

A great expansion of C. raciborskii in the temperate waters was noted during the past decades 

(Padisák, 1997). After its first records in the Danube Delta (Roll, 1961), its mass development 

was found in various floodplain habitats along the Danube River, from the Lower Danube 

(Stoyneva, 2003) till the Upper Danube (Dokulil and Mayer, 1996). The first finding of C. 

raciborskii bloom in the Lake Sakadaš was in the extremely dry summer of 2003 when its long-

lasting over-domination led to the establishment of equilibrium phase (Mihaljević et al., 2009). 

Afterwards, massive development of C. raciborskii has been noted in the summer of 2007 

(Mihaljević and Stević, 2011). Given data showed that C. raciborskii was accompanied species 

(5.85 % of the total biomass) during the blooming of cyanobacteria, dominated by species from 

the S1 group (46.87% of the total biomass, over-dominated by Planktothrix agardhii) and co-

dominated by species from H1 group (24.38 % of the total biomass). It is known that species 

belonging to the S1, H1 and SN group are frequently in competition (Padisák et al., 2003). A 

comprehensive research of cyanobacterial blooming in this floodplain lake showed that low-

nitrogen H1 group was particularly sensitive to stress caused by flooding, while filamentous 

N2-fixing (SN) and non-N2-fixing species (S1) showed tolerance to short-term flooding (Stević 

et al., 2013). Thus, in the highly turbulent environmental conditions in the floodplain lake, 

species of the H1 group are less successful in forming long-lasted bloom. Factor F value 1 is 

used for the group H1, while for the groups S1, S2, SN factor F is 0. 

Concerning the appearance of cyanobacterial bloom in the investigated lake it must be 

emphasized that in the past decades, as a consequences of frequent occurrence of extreme flood 

events, the lake can be shifted between a state of turbid water, characterized by high 

phytoplankton biomass and regular appearance of cyanobacteria blooms, to a state of clear 

water with very low phytoplankton biomass and absence of cyanobacteria, and back to the 

turbid state (Mihaljević and Stević, 2011). It is evident that the appearance of cyanobacterial 

bloom has a strong influence on the ecological status of the lake and values of Q index were 

inversely proportional to the dominance of cyanobacterial groups. Thus, low values of Q index 
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(1.04 and 1.54) during the cyanobacterial bloom in September-October 2011 substantially 

decreased the final assemblage index value on an annual scale (2.57). 

A permanent component of phytoplankton in the lake are diatoms, sharing a certain percentage 

on a whole-year scale in both observed periods. A previous research (Stević et al., 2013) 

summarized that flooding of the lake and mixed waters are favorable for the development of 

diatoms belonging to the B, C, D and P functional groups. However, due to the dilution and 

washout effect, their biomass is low during the long-lasting flooding despite their input from 

the river. The similar pattern was established in the investigated period 2011-2012. However, 

comparison with the historical records showed that in particular conditions some diatoms 

species can be mass developed and form a heavy bloom. The most expressive diatom bloom 

had occurred in June of 1973, after extremely high flooding and in the hypoxic conditions, when 

species from the D group (Stephanodiscus hantzschi and S. dubius) contributed up to 83.75% 

of the total biomass. Similar physical and chemical characterization of the environment, 

hypoxic and alkaline condition after extremely high flooding in July of 1972, supported a heavy 

monotypic bloom of centric diatom Aulacoseira italica from the group B, which contributed up 

to 78.59% of the total biomass. The high abundance of Stephanodiscus hantzschii is considered 

as indicative of high nutrient levels and is a good indicator of eutrophic conditions in lakes 

(Tolotti et al., 2010, and cites therein). It is known that many species of Stephanodiscus and 

Aulacoseira form a vegetative resting cell in surficial lake sediments and are meroplanktonic, 

spending a part of their life in hypolimnion or the littoral zone and found in the plankton only 

during periods when the water column undergoes turbulent mixing (Lashaway and Carrick, 

2010). Moreover, Yang et al. (2015) revised the physiological characteristics defined by 

Reynolds et al. (2002) for the groups B and D as follows. Habitat template for the group B 

(Aulacoseira italica): mixed, mesotrophic, small-medium lakes; adapted to low light; some 

species could form resting cells, meroplanktonic. Habitat template for the group D 

(Stephanodiscus hantzschii): shallow, nutrient-enriched, well-ventilated waters; sensitive to 

nutrient depletion; some species could form resting cells. Factor F value used till now for more 

or less similar lake types (Padisák et al., 2006; Belkinova et al., 2014; Wang et al., 2011) varied 

between 1 and 5 for the group B and between 2 and 3 for the group D. According to the given 

experience of heavy blooming of species from B and D in the condition of extremely high 

anthropogenic pressure and deteriorated waters factor F value 2 was used for both groups. 

The appearance of diatom-dominated functional groups C, P, TB and A, groups with maximal 

F factor value 5, is commonly associated with the conditions of flooding phase and clear water 



 

33 

with very low phytoplankton biomass (Mihaljević and Stević, 2011; Stević et al., 2013),  as 

confirmed by the obtained results. Species from the group TB (Navicula spp., Cymbella, 

Melosira varians) characteristic for highly lotic environments (Padisák et al., 2009; Abonyi et 

al., 2012) as well as from the group A (small centric diatoms) characteristic for clear, often 

mixed lakes with low P half-saturation (Reynolds et al., 2002) occasionally occurred with very 

small contribution (less than 5%) to the total biomass. Likewise, species from the group P 

(Aulacoseira granulata) which is characteristic for more eutrophic waters (Yang et al., 2016). 

It should be noted that the dependence of species from the group P upon physical mixing is 

strongly apparent, requiring a continuous or semi-continuous mixed layer of 2-3 m in thickness 

(Reynolds et al., 2002). Mixing of the water in the floodplain lake is related to the flood pulses, 

which can support re-suspension of meroplanktonic species, such as A. granulata, in the water 

column. However, flooding usually lasts a short time and is followed with dry phase with 

stagnant water unfavorable for further development of species from the group P. However, 

small centric diatoms from the group C were permanently present in phytoplankton during the 

period 2011-2012, while their occurrence in the past was insignificant. Their dominance 

(48.69% of the total biomass) in November 2012 coincided with the decrease of nutrients in the 

lake water and Q index reached a maximum value of 3.68, which indicated good ecological 

status of the lake in that time. 
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5. CONCLUSION 

 

A comparison of previous and ongoing assessments of phytoplankton assemblage dynamics has 

greatly assisted in the evaluation of the ecological state of the floodplain lake using the 

assemblages Q index, especially because there is no data for the determination of pristine 

condition. The chosen historical assessment reflects a period of significant anthropogenic 

influences that resulted in rapid eutrophication, moreover deterioration of water environment. 

The frequent appearance of heavy bloom of only one species or assemblages characteristic for 

polluted lakes decreased the value of Q index to bad and tolerable state. Recent data suggest 

that water quality improvement and near-natural hydrological condition support algal 

assemblages characteristic for naturally eutrophic lakes and values of Q index varied between 

medium to good ecological status. Currently, the most important threat for this lake is a long-

lasting bloom of alien invasive cyanobacteria what might lead to shifting towards the bad 

condition. Altogether, by the evaluation of historical records and the application of assemblages 

Q index, natural changes can be distinguished from anthropogenic changes in the floodplain 

lake. 
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7. APPENDIX 

Appendix 1. Biomass of phytoplankton with pertaining functional group in the period July 2011-October 2012. 

 

  Biomass (mg L-1) 

  2011 2012 

List of species FG Jul Aug Sep Oct Nov Dec Jan Mar Apr May Jun Jul Aug Sep Oct 

CYANOBACTERIA                                 

Anabaena sp.  H1   0.26         <0.005         0.06       

Anabaenopsis arnoldii Aptekar H1 0.29 0.29                     0.38 0.61   

Aphanizomenon flosaquae Ralfs ex Bornet & 

Flahault 
H1     3.79     0.29 0.05       0.12 0.09 3.30   0.69 

Cuspidothrix issatschenkoi (Usachev) P.Rajaniemi, 

Komárek, R.Willame, P. Hrouzek, K.Kastovská, 

L.Hoffmann & K.Sivonen 

H1 0.25   31.85                 0.07 2.56 0.59   

Dolichospermum sigmoideum (Nygaard) Wacklin, 
L.Hoffmann & Komárek 

H1 3.17                       4.63     

Dolichospermum solitarium (Klebahn) Wacklin, 

L.Hoffmann & Komárek 
H1 1.37 0.46                   0.51 0.30     

Dolichospermum spiroides (Klebhan) Wacklin, 
L.Hoffmann & Komárek 

H1 0.73                             

Aphanocapsa delicatissima West & G.S.West K         1.73 0.01           0.04       

Aphanocapsa planctonica (G.M.Smith) Komárek 

& Anagnostidis 
K 0.08 0.12 0.20 0.05           0.02 0.07 0.04 0.16 0.02 0.09 

Cyanothece aeruginosa (Nägeli) Komárek K   0.12                           

Chroococcus distans (G.M.Smith) Komárková-

Legnerová & Cronberg 
L0                     0.13         

Chroococcus minutus (Kützing) Nägeli L0 0.03       0.04 0.03 0.01 0.02 0.02 0.06 0.03 0.06 0.07 0.01 0.01 

Chroococcus turgidus (Kützing) Nägeli L0 0.07   0.06     0.03       0.03       0.15   

Gomphosphaeria aponina Kützing L0 0.24   0.38     0.01       0.02   0.03 0.08   0.16 

Gomphosphaeria sp. L0   0.07                           

Limnococcus limneticus (Lemmermann) 

Komárková, Jezberová, O.Komárek & Zapomelová 
L0   0.02                           

Merismopedia elegans A.Braun ex Kützing L0     2.19 0.99                 0.86 0.57   

Merismopedia glauca (Ehrenberg) Kützing L0   0.07                           

Merismopedia punctata Meyen L0 0.04 0.35 0.43               0.01     0.03   

Merismopedia tenuissima Lemmermann L0                       0.06       
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  Biomass (mg L-1) 

  2011 2012 

List of species FG Jul Aug Sep Oct Nov Dec Jan Mar Apr May Jun Jul Aug Sep Oct 

Snowella lacustris (Chodat) Komárek & Hindák L0       0.06                   0.02   

Woronichinia fusca (Skuja) Komárek & Hindák L0 0.18 0.12                           

Microcystis aeruginosa (Kützing) Kützing M 4.32                             

Microcystis viridis (A.Braun) Lemmermann M 0.15                             

Kamptonema formosum (Bory ex Gomont) 

Strunecký, Komárek & J.Smarda 
S1     2.34 0.26 0.17   0.03             0.79   

Leptolyngbya fragilis (Gomont) Anagnostidis & 

Komárek 
S1     1.62 0.63 0.20 0.37 0.01 0.09 0.08 0.03 0.12 0.09 0.74 0.53 0.75 

Limnothrix redekei (Goor) Meffert S1           0.49 0.47 0.23 1.05 0.58           

Phormidium sp. S1 0.56 0.19                           

Planktolyngbya limnetica (Lemmermann) 

Komárková-Legnerová & Cronberg 
S1   0.29                           

Planktothrix agardhii (Gomont) Anagnostidis & 
Komárek 

S1 3.74 7.71 60.19 26.78 1.91 0.32 0.22 0.11 0.36 0.37     5.80 1.12 0.55 

Pseudanabaena limnetica (Lemmermann) 

Komárek 
S1 0.36 1.41 4.31 0.31 0.04 0.81 0.23 0.33 0.50 0.41 0.11 0.01 0.18 1.48 0.91 

Romeria elegans (Woloszynska) Geitler S1     0.07 0.07     <0.005   0.02 0.03   0.03 1.16 0.65 0.11 

Cylindrospermopsis raciborskii (Woloszynska) 

Seenayya & Subba Raju 
SN     8.56                   0.09     

                 

EUGLENOPHYTA                                

Euglena texta (Dujardin) Hübner W1                             1.19 

Euglena variabilis G.A.Klebs W1               0.09     0.10         

Euglena viridis (O.F.Müller) Ehrenberg W1   0.43                           

Lepocinclis acus (O.F.Müller) B.Marin & 

Melkonian 
W1 0.34                           0.20 

Lepocinclis ovum (Ehrenberg) Lemmermann W1                 0.94             

Lepocinclis salina F.E.Fritsch W1         1.85                 0.31   

Lepocinclis tripteris (Dujardin) B.Marin & 

Melkonian 
W1   0.38                           

Phacus pleuronectes (O.F.Müller) Nitzsch ex 
Dujardin 

W1                       0.24       

Phacus pusillus Lemmermann W1                           0.32   

Strombomonas acuminata (Schmarda) Deflandre W2                         0.74     
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  Biomass (mg L-1) 

 

 2011 2012 

List of species FG Jul Aug Sep Oct Nov Dec Jan Mar Apr May Jun Jul Aug Sep Oct 

Trachelomonas hispida (Perty) F.Stein W2       0.69                       

Trachelomonas oblonga Lemmermann W2 1.01   0.32 0.69     0.02   0.15         0.30 0.15 

Trachelomonas planctonica Svirenko W2 1.03                             

Trachelomonas sp. W2   0.12                           

Trachelomonas volvocina (Ehrenberg) Ehrenberg W2     0.23 0.92                       

                                

PYRROPHYTA                                 

Parvodinium inconspicuum (Lemmermann) 
S.Carty 

L0 1.35                             

Parvodinium pusillum (Penard) S.Carty L0   0.10                           

Peridinium aciculiferum Lemmermann L0 1.16                 0.61           

Peridinium bipes Stein L0                             0.68 

Peridinium cinctum (O.F.Müller) Ehrenberg L0 3.47                       1.51 0.69   

Peridinium sp. L0                       0.14       

Glenodinium sp. Y 0.31                         0.75 0.37 

                                

CRYPTOPHYTA                                 

Rhodomonas lacustris Pascher & Ruttner X2 0.28 0.15 0.85 1.69 0.70 0.32 0.09 0.39 0.69 0.61 0.40 0.02 1.16 0.59 0.94 

Rhodomonas sp. X2           0.62 0.07 0.41 0.63             

Cryptomonas erosa Ehrenberg Y     1.64 6.05 0.30 0.17 0.08 0.75 0.70 1.21 1.13 0.41 3.00 0.79 0.48 

Cryptomonas ovata Ehrenberg Y     14.54   2.23 1.27 0.72 2.23 1.87 0.64 2.43 0.69 5.99 3.49 1.62 

Cryptomonas sp. Y 14.27 7.23                           

                 

CHRYSOPHYTA                 

Xantophyceae                                 

Centritractus belonophorus (Schmidle) 

Lemmermann 
J                       0.03     0.02 

Goniochloris mutica (A.Braun) Fott J       0.03               0.01       
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  Biomass (mg L-1) 

 

 2011 2012 

List of species FG Jul Aug Sep Oct Nov Dec Jan Mar Apr May Jun Jul Aug Sep Oct 

Ophiocytium capitatum var. longispinum (Möbius) 
Lemmermann 

J     0.17                         

Ophiocytium capitatum Wolle J                     0.02 0.04 0.09     

Tetraplektron tribulus (Pascher) Lobelich J                           0.02   

                                

Chrysophyceae                                 

Dinobryon divergens O.E.Imhof E 0.18             0.15   0.01 0.13         

Salpingoeca frequentissima (Zacharias) 
Lemmermann 

E                             0.01 

Synura uvella Ehrenberg WS               0.54               

Bitrichia danubiensis Juri X2                         0.03     

Kephyrion rubi-claustri Conrad X2             0.05 0.02 0.22 0.01       0.01   

Kephyrion sp. X2             0.01 <0.005               

Chrysococcus rufescens Klebs X3     0.41 1.10 0.02 0.16 0.03 0.29 0.35 0.13 0.08 0.05 0.27 0.15 0.15 

                                

Bacillariophyceae                                 

Acanthoceras zachariasii (Brun) Simonsen A 0.52                             

Cyclotella sp. A                   0.21       0.21   

Lindavia comta (Kützing) Nakov, Gullory, Julius, 

Theriot & Alverson 
B             0.04                 

Asterionella formosa Hassall C 0.16 0.16         0.02   0.19 0.25 0.08         

Cyclotella meneghiniana Kützing C 0.55 0.13   2.48 23.17 0.30 0.22 0.36   0.44 1.17 0.34 0.79 0.73 0.74 

Fragilaria acus (Kützing) Lange-Bertalot in 

Krammer & Lange-Bertalot 
D 0.10 0.02 0.66 0.08 1.53 0.09 0.19 0.08 0.36 0.09   0.10 1.85   0.06 

Nitzschia acicularis (Kützing) W.Smith D     0.12 0.02   0.02 0.01   0.01   0.02     0.03   

Nitzschia fusiformis Grunow D 0.08                             

Nitzschia holsatica Hustedt D                     0.13 0.18 0.10 0.01   

Nitzschia palea (Kützing) W.Smith D       0.03     0.01         0.16 0.32     

Nitzschia sp. 1 D 0.03 0.01                           

Nitzschia sp. 2 D 0.09 0.05                           
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  Biomass (mg L-1) 

 

 2011 2012 

List of species FG Jul Aug Sep Oct Nov Dec Jan Mar Apr May Jun Jul Aug Sep Oct 

Skeletonema potamos (C.I.Weber) Hasle in Hasle 
& Evensen 

D         0.01                 0.02   

Stephanodiscus hantzschii Grunow D 2.88 4.74 1.27 6.01 7.70 2.09 0.11 0.34     0.91 0.14   0.24 1.16 

Ulnaria ulna (Nitzsch) Compère D 2.34 16.41 1.95   1.42     1.18 4.78   2.43 1.53 7.13 0.47   

Amphora ovalis (Kützing) Kützing MP 3.64 0.23                           

Cocconeis placentula Ehrenberg MP 0.35                             

Nitzschia sigmoidea (Nitzsch) W.Smith MP         0.51                     

Aulacoseira granulata (Ehrenberg) Simonsen P 1.51 1.08   0.52 1.04           1.05         

Aulacoseira granulata var. angustissima (Otto 

Müller) Simonsen 
P       0.88 0.20     0.07   0.11 0.52 0.42     0.51 

Fragilaria capucina Desmazières P 0.26                             

Cymbella sp. TB 0.11                             

Cymbella tumida (Brébisson) Van Heurck TB 0.11                             

Gomphonema parvulius (Lange-Bertalot & 

E.Reichardt) Lange-Bertalot & E.Reichardt 
TB       0.05                       

Melosira varians C.Agardh TB 0.38                             

Navicula sp. 1 TB 0.03 0.03         0.01         0.05       

Navicula sp. 2 TB 0.09 0.42                           

Navicula sp. 3 TB 0.05                             

                 

CHLOROPHYTA                                 

Chlorobotrys sp. F 0.22   0.13               0.04 0.08 0.14     

Dictyosphaerium ehrenbergianum Nägeli F 0.12 0.03     0.03                   0.02 

Hindakia tetrachotoma (Printz) C.Bock, Pröschold 

& Krienitz 
F 0.15 0.03       0.01                   

Keratococcus bicaudatus (A.Braun ex Rabenhorst) 

J.B.Petersen 
F                       0.11       

Kirchneriella lunaris (Kirchner) Möbius F                             <0.005 

Kirchneriella sp. F   0.03                           

Micractinium bornhemiense (W.Conrad) 

Korshikov 
F       2.08                     0.45 
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  Biomass (mg L-1) 

 

 2011 2012 

List of species FG Jul Aug Sep Oct Nov Dec Jan Mar Apr May Jun Jul Aug Sep Oct 

Micractinium pusillum Fresenius F 0.29 0.38     0.35 0.26         0.13 0.13     0.45 

Mucidosphaerium pulchellum (H.C.Wood) C.Bock, 

Proschold & Krienitz 
F 0.05 0.02                 0.05 0.04       

Oocystis lacustris Chodat F 0.31 0.08                           

Oocystis sp. F 0.12 0.12                           

Treubaria planctonica (G.M.Smith) Korshikov F                         0.03     

Treubaria schmidlei (Schröder) Fott & Kovácik F                           0.02 0.02 

Actinastrum hantzschii Lagerheim J 0.17 0.11 0.29 0.16             0.08 0.37 0.30 0.03 0.07 

Chlorotetraedron incus (Teiling) Komárek & 

Kovácik 
J   0.03 0.07             0.01 0.02 0.02     0.02 

Coelastrum astroideum De Notaris J 1.10 0.18 0.46   0.17         0.10         0.11 

Coelastrum microporum Nägeli J 0.43 0.65           0.07   0.46 0.15 0.18   1.04   

Crucigenia quadrata Morren J                     0.01 0.01   0.14 0.04 

Crucigenia tetrapedia (Kirchner) Kuntze J 1.01 0.13 0.07 0.04 0.01 0.01   <0.005   0.02           

Desmodesmus arthrodesmiformis (Schröder) 

S.S.An, Friedl & E.Hegewald 
J       0.09             0.02 0.07 0.04     

Desmodesmus bicaudatus (Dedusenko) 

P.M.Tsarenko 
J 0.07     0.05 0.03         0.02 0.06 0.04   0.20 0.02 

Desmodesmus denticulatus (Lagerheim) S.S.An, 

T.Friedl & E.Hegewald 
J       0.18                     0.02 

Desmodesmus intermedius (Chodat) E.Hegewald J   0.16                           

Desmodesmus opoliensis (P.G.Richter) 

E.Hegewald 
J 0.49                   0.06       0.05 

Desmodesmus spinosus (Chodat) E.Hegewald J             0.01   0.02 0.08   0.03       

Franceia ovalis (Francé) Lemmermann J                     0.03         

Golenkinia radiata Chodat J   0.16   0.21 0.28 0.05         0.03     0.14 0.37 

Lagerheimia ciliata (Lagerheim) Chodat J   0.06                           

Lagerheimia genevensis (Chodat) Chodat J       0.01   <0.005 <0.005 <0.005 <0.005 <0.005 <0.005         

Lagerheimia longiseta (Lemmermann) Printz J   0.01                         <0.005 

Lagerheimia wratislaviensis f. heterospina 
Hortobágyi 

J   0.01                           

Monactinus simplex (Meyen) Corda J       0.14               0.03   0.06   
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  Biomass (mg L-1) 

 

 2011 2012 

List of species FG Jul Aug Sep Oct Nov Dec Jan Mar Apr May Jun Jul Aug Sep Oct 

Pediastrum boryanum var. cornutum (Raciborski) 

Sulek 
J                     0.05         

Pediastrum duplex Meyen J 0.20       0.18             0.06   0.12   

Pseudopediastrum boryanum (Turpin) E.Hegewald J     0.33 0.18             0.05     0.08 0.08 

Pseudotetraëdron neglectum Pascher J                             0.02 

Scenedesmus ecornis (Ehrenberg) Chodat J         0.03         0.02           

Scenedesmus obtusus f. disciformis (Chodat) 
Compère 

J                             0.02 

Scenedesmus obtusus Meyen J                     0.02 0.03       

Scenedesmus quadricauda (Turpin) Brébisson J 1.01 0.40 0.76 0.55 0.64   0.06 0.03 0.06 0.43 0.17 0.31 0.26 0.18 0.12 

Scenedesmus sp. J   0.06                           

Stauridium tetras (Ehrenberg) E.Hegewald J                     0.03 0.03       

Tetradesmus lagerheimii M.J.Wynne & Guiry J 0.42 0.14   0.19 0.25         1.02 0.36 0.16     0.08 

Tetradesmus obliquus (Turpin) M.J.Wynne J 0.14                             

Tetraëdron minimum (A.Braun) Hansgirg J 0.03     0.02 0.01 <0.005 <0.005     0.01       0.01 0.02 

Tetraëdron trigonum (Nägeli) Hansgirg J         0.02                     

Tetrastrum glabrum (Y.V.Roll) Ahlstrom & 

Tiffany 
J     0.03   0.01   <0.005 0.01   0.01   0.02   0.01 0.02 

Tetrastrum staurogeniiforme (Schröder) 
Lemmermann 

J 0.02             <0.005   0.01 0.01 0.01 0.04   0.01 

Treubaria triappendiculata C.Bernard J 0.04                             

Willea apiculata (Lemmermann) D.M.John, 

M.J.Wynne & P.M.Tsarenko 
J 0.09                             

Willea rectangularis (A.Braun) D.M.John, 

M.J.Wynne & P.M.Tsarenko 
J           0.01           0.06   0.13 0.05 

Cosmarium laeve Rabenhorst N                       0.08       

Cosmarium phaseolus Brébisson ex Ralfs N 0.32 0.32       0.22                 0.57 

Closteriopsis acicularis (Chodat) J.H.Belcher & 
Swale 

P     0.09 0.05 0.03 0.03 0.01       <0.005   0.08 0.10 0.01 

Closterium dianae Ehrenberg ex Ralfs P 0.28                             

Closterium ehrenbergii Meneghini ex Ralfs P 0.28                             

Closterium gracile Brébisson ex Ralfs P 0.28 0.28                     0.37     

Closterium intermedium Ralfs P                             0.33 
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Closterium kuetzingii Brébisson P 0.34                             

Closterium limneticum Lemmermann P 0.40           0.02                 

Staurastrum sp. P                           0.28   

Staurastrum tetracerum Ralfs ex Ralfs P                             0.28 

Binuclearia lauterbornii (Schmidle) Proschkina-

Lavrenko 
T       0.19               0.69 2.29 0.21   

Mougeotia sp. T 0.35   4.83   0.48             0.10 0.69 0.11 0.21 

Ankistrodesmus arcuatus Korshikov X1   0.01 0.02 0.02 0.01 0.02 0.03 0.04 0.07   0.01   0.01 <0.005   

Ankistrodesmus falcatus (Corda) Ralfs X1   0.01                           

Ankistrodesmus fusiformis Corda X1 0.04         0.01   0.01         0.03   0.01 

Chlorolobion braunii (Nägeli) Komárek X1                       <0.005 0.01 0.03   

Messastrum gracile (Reinsch) T.S.Garcia X1 0.03       0.01                 0.01   

Monoraphidium contortum (Thuret) Komárková-

Legnerová 
X1 0.09 0.22 0.01 0.13 0.02 0.05 0.01 0.02 0.14 0.24 0.08 0.07 0.08 0.02 0.03 

Monoraphidium convolutum (Corda) Komárková-

Legnerová 
X1                             0.02 

Monoraphidium griffithii (Berkeley) Komárková-

Legnerová 
X1 0.07                   0.02 0.02       

Monoraphidium irregulare (G.M.Smith) 

Komárková-Legnerová 
X1 0.02 1.30 0.74         0.05 0.06         0.10 0.12 

Monoraphidium komarkovae Nygaard X1 0.02 0.01                           

Monoraphidium minutum (Nägeli) Komárková-

Legnerová 
X1 0.02 0.01                       0.02   

Polyedriopsis spinulosa (Schmidle) Schmidle X1     0.14 0.17                       

Pseudodidymocystis inconspicua (Korshikov) 

Hindák 
X1 0.06 0.02                           

Pseudodidymocystis planctonica (Korshikov) 

E.Hegewald & Deason 
X1       0.02   <0.005 0.11   0.01 0.05 0.07 0.16 0.14 0.13 0.05 

Pseudosphaerocystis lacustris (Lemmermann) 
Nováková 

X1 0.04                             

Schroederia spiralis (Printz) Korshikov X1       0.76   0.03             0.10 0.58 0.05 

Selenastrum bibraianum Reinsch X1     0.10                 0.01       

Carteria pseudoglobosa Ettl X2                     0.16 0.04       

Carteria sp. X2 0.48 0.79         0.12     0.25       0.48 1.50 
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Chlamydomonas incerta Pascher X2         0.12                     

Chlamydomonas pertusa Chodat X2                   0.09 0.10 0.04     0.47 

Chlamydomonas sp. X2 3.13 3.18                           

Coccomonas orbicularis Stein X2 0.04                             

Platymonas cordiformis Korshikov X2                     0.23         

Schroederia setigera (Schröder) Lemmermann X3                   0.21 0.10       0.33 

Koliella longiseta (Vischer) Hindák X3   0.02   0.03 0.13 0.04 0.05 0.08 0.15 0.15 <0.005   0.66 0.02 0.02 

Total biomass (mg L-1) 65.07 52.13 146.21 55.65 47.59 8.16 3.13 7.99 13.44 9.02 13.32 8.63 48.53 19.94 17.58 

Number of species 85 63 39 44 39 33 37 31 26 40 52 59 44 58 61 

 

 


